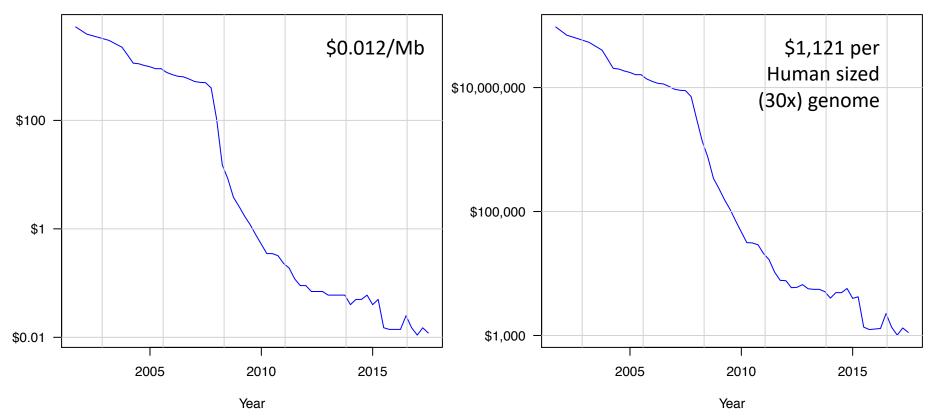
Bioinformatics: A perspective

Dr. Matthew L. Settles

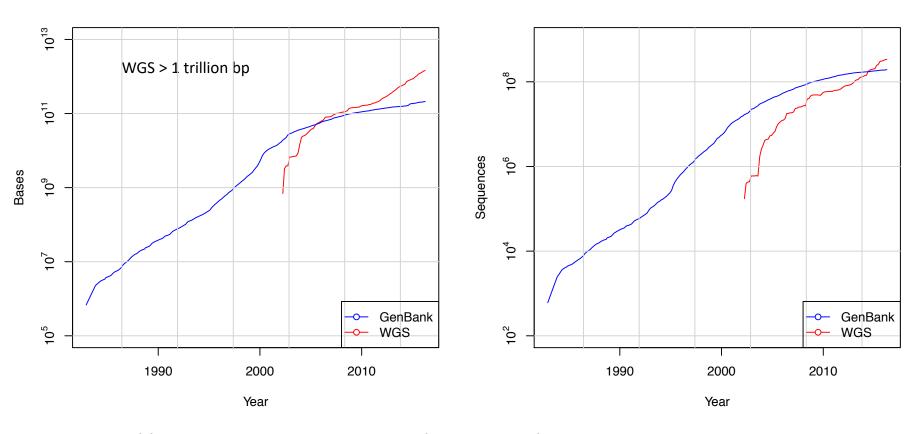
Genome Center University of California, Davis settles@ucdavis.edu

Outline


- The World we are presented with
- Bioinformatics as Data Science
- Training
- The Bottom Line

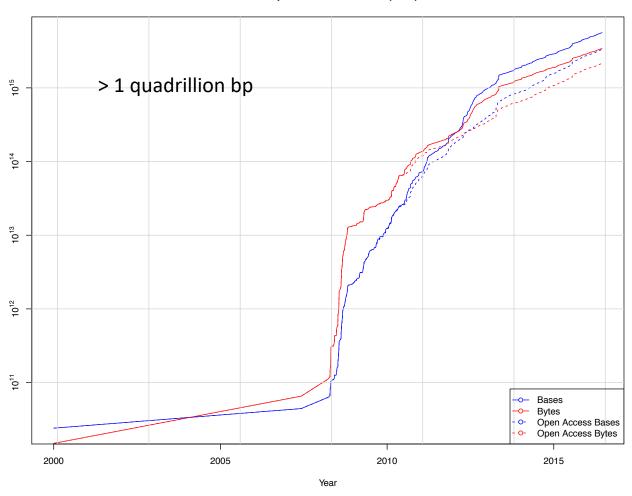
Sequencing Costs

July 2017


Cost per Megabase of Sequence

Cost per Human Sized Genome @ 30x

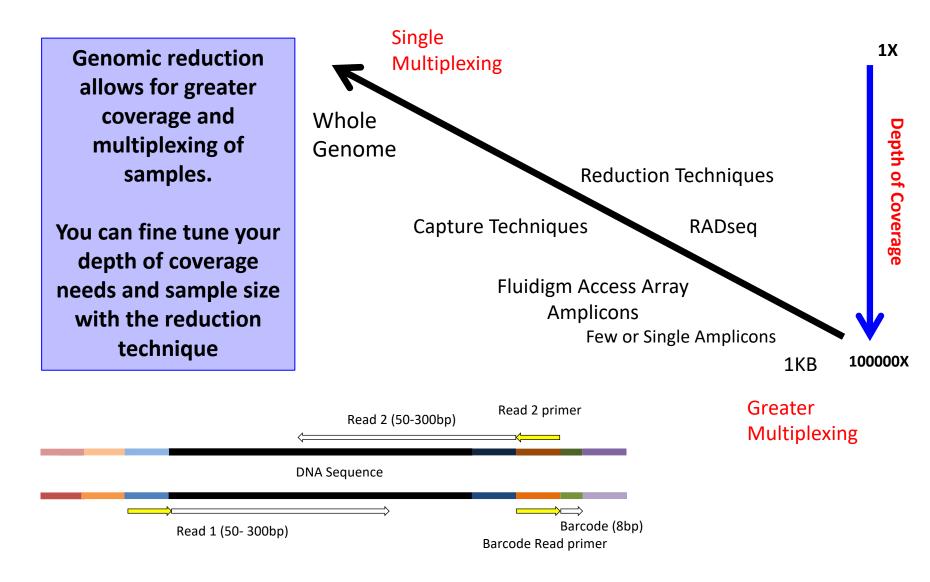
- Includes: labor, administration, management, utilities, reagents, consumables, instruments (amortized over 3 years), informatics related to sequence productions, submission, indirect costs.
- http://www.genome.gov/sequencingcosts/


Growth in Public Sequence Database

http://www.ncbi.nlm.nih.gov/genbank/statistics

Short Read Archive (SRA)

Growth of the Sequence Read Archive (SRA) over time


http://www.ncbi.nlm.nih.gov/Traces/sra/

Illumina

• 2006 – The second 'Next Generation Sequencing' platform was Solexa (later acquired by Illumina). Now the dominant platform with 75% market share of sequencer and and estimated >90% of all bases sequenced are from an Illumina machine, Sequencing by Synthesis > 200Gb/day.

New NovaSeq

Flexibility

Sequencing Libraries: MLA-seq

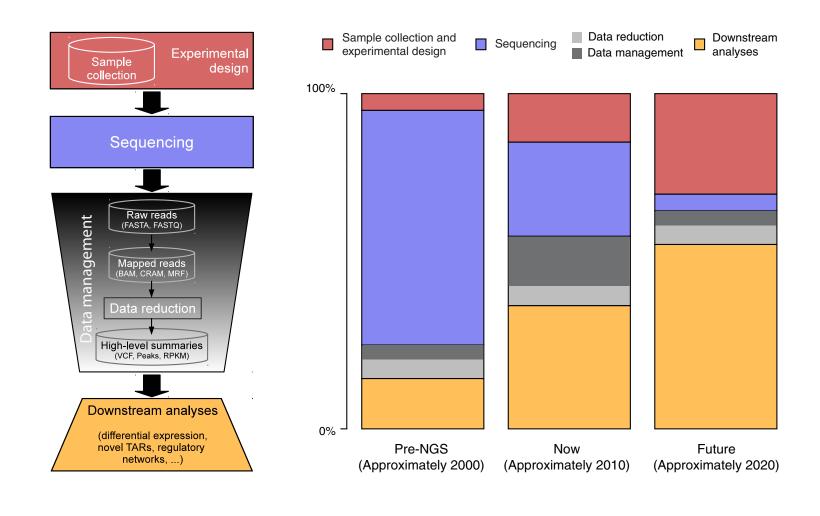
•	DNA-seq	DNase-seq	tagRNA-seq
	•		•

- RNA-seq PAT-seq ATAC-seq
- Amplicons Structure-seq MNase-seq
- CHiP-seq MPE-seq FAIRE-seq
- MeDiP-seq STARR-seq Ribose-seq
- RAD-seq Mod-seq smRNA-seq
- ddRAD-seq **BrAD-seq** mRNA-seq
- SLAF-seq Tn-seq EnD-seq

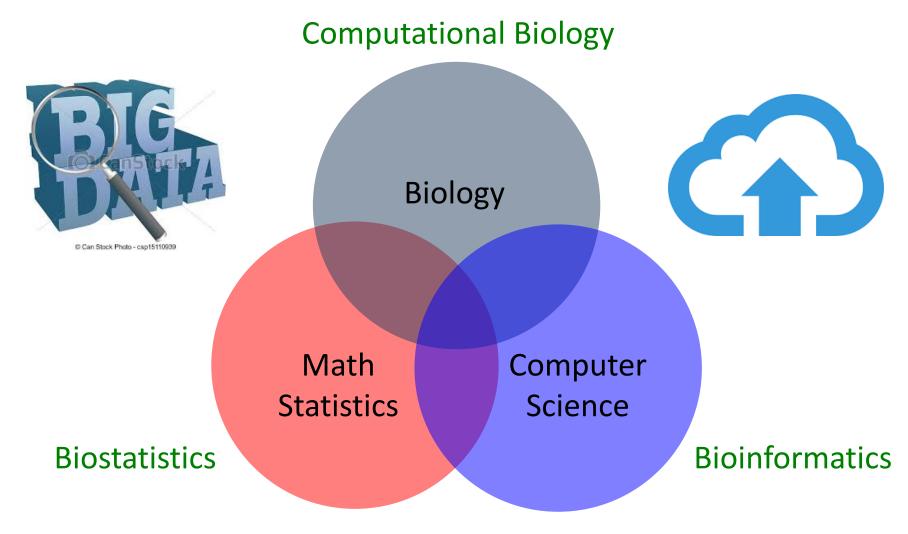
Pool-seq

G&T-seq QTL-seq

The data deluge


Plucking the biology from the Noise

Reality



• Its much more difficult than we may first think

The real cost of sequencing

Bioinformatics is Data Science

'The data scientist role has been described as "part analyst, part artist."' Anjul Bhambhri, vice president of big data products at IBM

Data Science

Data science is the process of formulating a quantitative question that can be answered with data, collecting and cleaning the data, analyzing the data, and communicating the answer to the question to a relevant audience.

7 Stages to Data Science

- 1. Define the question of interest
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Fit statistical models
- 6. Communicate the results
- 7. Make your analysis reproducible

1. Define the question of interest

Begin with the end in mind!

what is the question how are we to know we are successful what are our expectations

dictates

the data that should be collected the features being analyzed which algorithms should be use

- 2. Get the data
- 3. Clean the data
- 4. Explore the data

Know your data!

know what the source was technical processing in producing data (bias, artifacts, etc.) "Data Profiling"

Data are never perfect but love your data anyway!

the collection of massive data sets often leads to unusual, surprising, unexpected and even outrageous.

5. Fit statistical models

Over fitting is a sin against data science!

Model's should not be over-complicated

 If the data scientist has done their job correctly the statistical models don't need to be incredibly complicated to identify important relationships

 In fact, if a complicated statistical model seems necessary, it often means that you don't have the right data to answer the question you really want to answer.

- 6. Communicate the results
- 7. Make your analysis reproducible

Remember that this is 'science'!

We are experimenting with data selections, processing, algorithms, ensembles of algorithms, measurements, models. At some point these *must all be tested for validity and applicability* to the problem you are trying to solve.

Data science done well looks easy – and that's a big problem for data scientists

simplystatistics.org
March 3, 2015 by Jeff Leek

Training: Data Science Bias

Data Science (data analysis, bioinformatics) is most often taught through an apprentice model

Different disciplines/regions develop their own subcultures, and decisions are based on cultural conventions rather than empirical evidence.

- Programming languages
- Statistical models (Bayes vs. Frequentist)
- Multiple testing correction
- Application choice, etc.

These (and others) decisions matter **a lot** in data analysis "I saw it in a widely-cited paper in journal XX from my field"

The Data Science in Bioinformatics

Bioinformatics is not something you are taught, it's a way of life

"The best bioinformaticians I know are **problem solvers** – they start the day not knowing something, and they enjoy finding out (themselves) how to do it. It's a great skill to have, but for most, it's not even a skill – it's a passion, it's a way of life, it's a thrill. It's what these people would do at the weekend (if their families let them)."

Mick Watson – Rosland Institute

Training - Models

- Workshops
 - Often enrolled too late
- Collaborations
 - More experience persons
- Apprenticeships
 - Previous lab personnel to young personnel
- Formal Education
 - Most programs are graduate level
 - Few Undergraduate

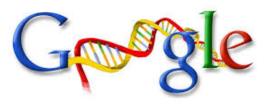
The last mile

http://www.bikeblanket.com/blog/suisse

Bioinformatics

- Know and Understand the experiment
 - "The Question of Interest"
 - Build a set of assumptions/expectations
 - Mix of technical and biological
 - Spend your time testing your assumptions/expectations
 - Don't spend your time finding the "best" software
 - Don't under-estimate the time Bioinformatics may take
 - Be prepared to accept 'failed' experiments

Bottom Line


Spend the time (and money) planning and producing **good quality**, **accurate and sufficient data** for your experiment.

Get to know to your data, develop and test expectations

Result, you'll **spend much less time** (and less money) extracting biological significance and results during analysis.

Substrate

Cloud Computing

Cluster Computing

BASTM

LINUX

Laptop & Desktop

Environment

"Command Line" and "Programming Languages"

VS

Bioinformatics Software Suite

Prerequisites for doing Bioinformatics

- Access to a multi-core (24 cpu or greater), 'high' memory 64Gb or greater Linux server.
- Familiarity with the 'command line' and at least one programming language.
- Basic knowledge of how to install software
- Basic knowledge of R (or equivalent) and statistical programming
- Basic knowledge of Statistics and model building