Towards Gapless, Chromosome Scale, Haplotype Assemblies

Jie Li, PhD UC Davis Bioinformatics Core August 30, 2018

Slides courtesy of Matt Settles

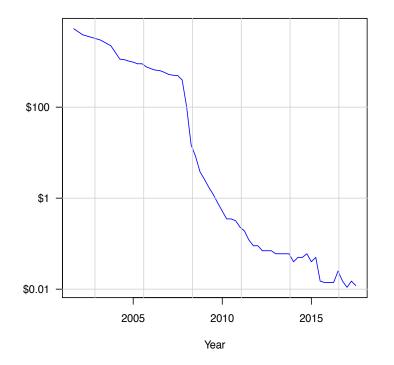
The **mission** of the Bioinformatics Core facility is to facilitate outstanding omics- scale research through these activities:

Data Analysis

The Bioinformatics Core promotes experimental design, advanced computation and informatics analysis of omics scale datasets that drives research forward.

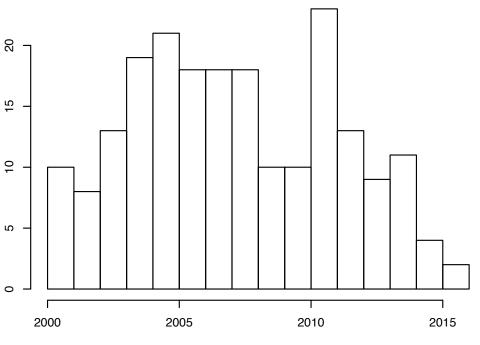
Research Computing

Maintain and make available high-performance computing hardware and software necessary for todays data-intensive bioinformatic analyses.


Training

The Core helps to educate the next generation of bioinformaticians through highly acclaimed training workshops, seminars and through direct participation in research activities.

Human Genome


- In 1990, the National Institutes of Health (NIH) and the Department of Energy joined with international partners to sequence the human genome.
- In April 2003, researchers successfully completed the Human Genome Project, under budget (\$2.7B) and more than two years ahead of schedule.
- Thousands of people contributed the Human Genome Project
- Even so, there remains ~400 gaps in the human reference sequence assembly representing hundreds of millions of bases.

The 3rd phase of Genome Assemblies

Cost per Megabase of Sequence

Number of new genome/version added over time (UCSC)

Voar

Renewed focus on genomes

- Sequencing has become more democratic. For example, it took more than 50 people, around a dozen centers, \$50 million and half a decade to generate a draft chimpanzee genome, published in 2005. This year, Eichler's lab completed a gorilla genome for about \$70,000. "That, to me, is a big deal," he says.
- Also a big deal, says Eichler, is the quality of their assembly. An earlier version of a gorilla genome was published in **2012** but that was done with shorter pieces of DNA, and therefore left hundreds of thousands of gaps. His team used long-read technology, closed 90 percent of those gaps, and was able to complete many genes that were only partially sequenced in the first attempt.

Speed-reading the genome:

Cheaper methods of sequencing are opening up doors for new research and new career paths. <u>http://www.nature.com/naturejobs/science/articles/10.1038/nj0492</u> 2016

Gorilla Genome

Assembly	2012 Illumina Assembly	2016 Pacific Biosciences Assembly
Total length	3,041,976,159 bp	3,080,414,926 bp
Contigs	465,847	16,073
Total contig length	2,829,670,843 bp	3,080,414,926 bp
Placed contig length	2,712,844,129 bp	2,790,620,487 bp
Unplaced contig length	116,826,714 bp	289,794,439 bp
Max. contig length	191,556 bp	36,219,563 bp
Contig N50	11.6 kb	9.6 mb
Scaffolds	22,164	554
Max. scaffold length	10,247,101 bp	110,018,866 bp
Scaffold N50	914 Kb	23.1 Mb

2012 Assembly: ABI capillary sequence and short 35bp Illumina sequence + BAC PE data 2016 Assembly: PACBIO SMRT sequence + BAC PE data, INDEL corrected with Illumina sequence

Genome Assembly is converging on more standardized data models

- Trend is to consider sample, data generation and bioinformatics together.
 - ALLPATH-LG, started with specific requirement of sequencing libraries

Libraries, insert types*	Fragment size, bp	Read length, bases	Sequence coverage, $ imes$	Required
Fragment	180 ⁺	≥100	45	Yes
Short jump	3,000	≥100 preferable	45	Yes
Long jump	6,000	≥100 preferable	5	No [‡]
Fosmid jump	40,000	≥26	1	No [‡]

Table 1. Provisional sequencing model for de novo assembly

• Discovar de novo

250bp paired-end PCR-free Illumina reads. No other libraries are required.

UCDAVIS Bioinformatics Core

Advances in high-noise, long-read assembly algorithms

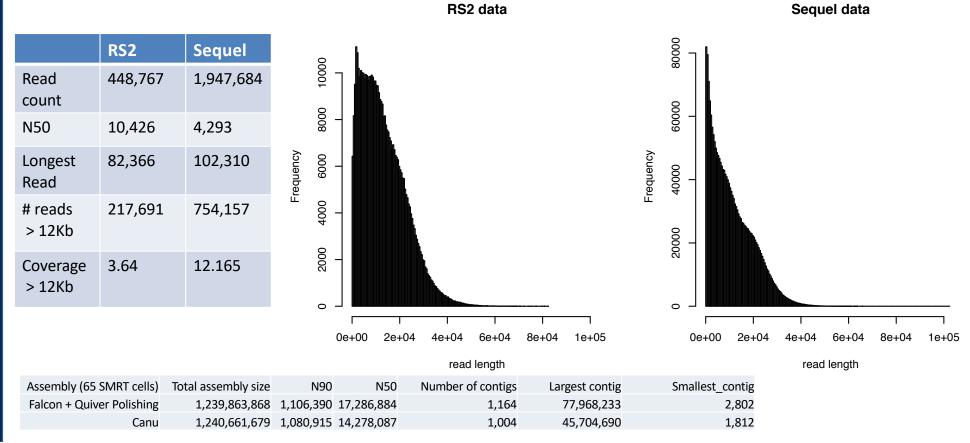
- Summer of 2015
 - Pacific Biosciences Falcon assembler for SMRT assembly of large genomes
 - Canu fork of Celera Assembler for single-molecule high-noise sequences.

• Key features:

- Discard all reads shorter than **X** bp to load into the overlapper, step significantly reduces the number of reads being analyzed.
- Self correct reads from all-by-all overlaps (takes advantages of cluster env.)
- Build a graph based on high quality, long corrected reads.
- "Polish" the resulting assembly using all reads, 60x coverage produces high quality final contigs.

Gapless: The 'Next, Next' Generation Sequencers (single molecule, long reads)

Oxford Nanopore

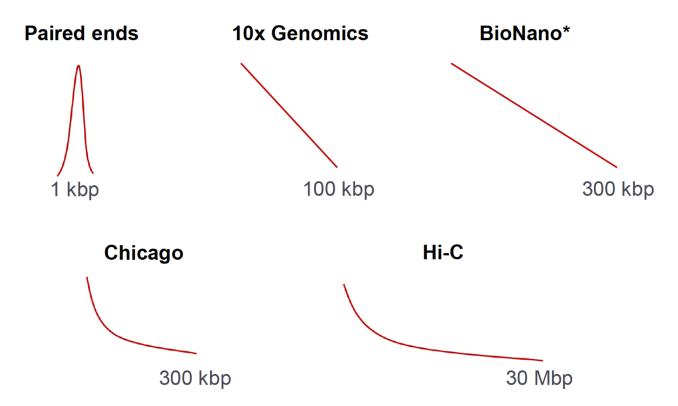


Pacific Biosciences

Pac Bio Advances (RSII vs Sequel)

California Condor data (~1.2Gbp genome) based on 65 SMRT cell in Jan 2017

Towards Gapless assemblies

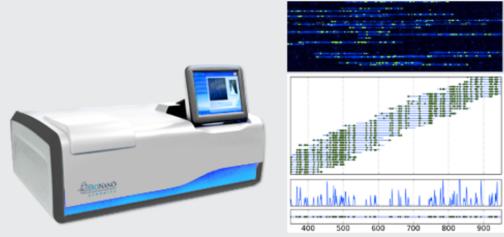

Promise

- Continued progress on DNA input and resulting PacBio/Oxford Nanopore Read Lengths and read depth will result in longer N50/N90 and fewer contigs.
- Algorithms are still young and have room for improvement.

Issues

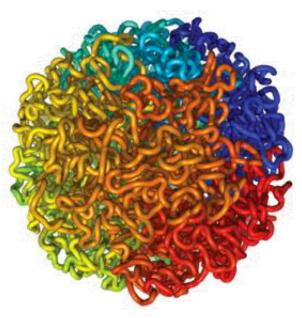
- Some mis-assemblies are still present, Chimeric reads are an issue
- Small INDELs are an issue and require cleanup (Illumina reads), especially within genes.

Chromosome Scale: Scaffolding Options

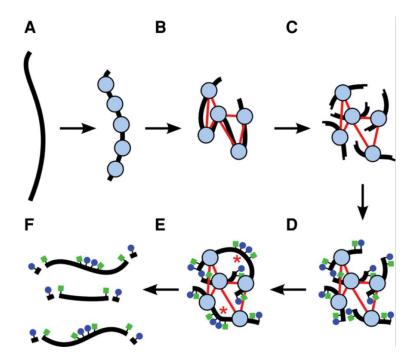


'Borrowed' from Sergy Koren talk from PacBio Informatics Developer Meeting in Jan 2017

Bionano Irys/Saphyr


 The Irys/Saphyr System puts the power of optical genome mapping. No more waiting for months to get a physical genome map. Bionano Next-Generation Mapping (NGM) provides long-range information to reveal true genome structure. Assists genomes assembles to near chromosomal arms.

Not sequencing based


Dovetail and Hi-C (Cross Linking) on Illumina

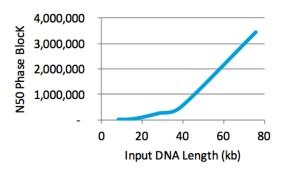
Hi-C Proximity Guided Scaffolding

Dovetail and Phase Genomics

Dovetail Chicago Libraries

10x genomics on Illumina

- 10x Genomics, Linked reads technology
- Illumina machines, Sequencing by Synthesis 2x150bp reads.



ARCS - https://github.com/bcgsc/arcs/tree/binomialx2

10x has its own assembler, Supernova

Phasing: 10x Genomics + high quality Illumina data, draft genomes??

The Kitchen Sink

- Available Technologies
 - Long Reads: Pacific Biosystems / Nanopore
 - Optical Maps: BioNano
 - Linked Reads: 10x Genomics
 - Cross Linking: Hi-C / Dovetail Chicago

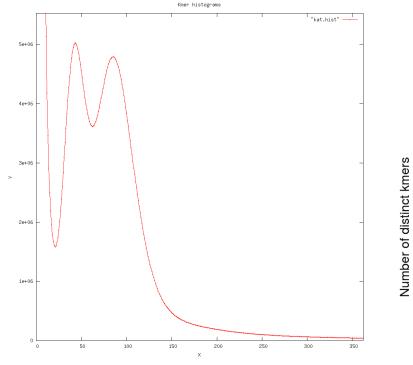
Long Contigs Scaffolding High base quality and phasing Scaffolding

- What the best combination, are all necessary? As algorithms improve, which become unnecessary
- Genome 10K and Vertebrate Genome project: Sequence ~66,000 vertebrates

Goat Genome

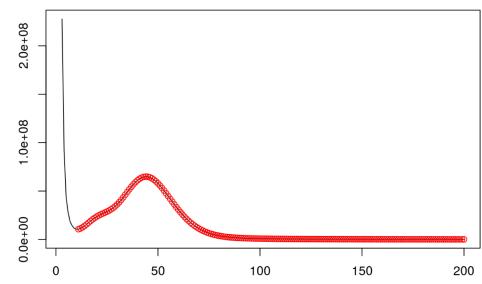
	CHIR_2.0 (BGI) - 2012	ARS1 - 2016
	14 Illumina PE libraries + Opgen	Pac Bio + Bionano + Hi-C
Coverage	175x	69x (@ 5.1Kb mean read length)
Assembly length	2.8 Gb	2.9Gb
Number of contigs	173,141	3,074
Contig N50	73.5 Kb	18.7 Mb
Number of scaffolds	103,494	31 (chromosomes)
Scaffold N50	9 Mb	87.3Mb

Adding in the optical maps from the Irys system reduced the total number of contigs to 1,780, with a contig N50 of 10.2 megabases. "The optical mapping increased the quality and confidence of the initial scaffolds," Phillippy said. The three technologies—PacBio, Bionano, and Hi-C—ended up being complementary to each other, he added. Finally, Illumina data is used to polish and make error corrections at the base level. **GenomeWeb** "Goat Genome Demonstrates Benefits of Combining Technologies for De Novo Assembly", Mar 07, 2017


Order: The Kitchen Sink

- Available Technologies
 - Long Reads: Pacific Biosystems / Nanopore
 Optical Maps: BioNano
 Linked Reads: 10x Genomics
 Cross Linking: Hi-C / Dovetail Chicago
 2 or 3
 Scaffolding
 Scaffol
- Make sure you have enough sample at the start of the project to add techniques over time
- Algorithms to improve combining data will improve over time

10x Genomics, Supernova Genome Stats


Genome	Size (Gb)	DNA size(Kb)	N50 contig (Kb)	N50 scaffold (Mb)	N50 phase block (Mb)
CowPea	0.38	46.5	28.3	0.83	0.35
Walnut*	0.89	55.0	48.0	0.60	0.25
California Condor#*	1.19	67.0	147.5	17.9	1.0
Menidia+	0.40	34.4	60.0	10.0	6.5
Holbrookia Lizard#	1.70	37.6	47.2	1.34	0.83
Sceloporus Lizard	1.56	50.4	59.3	1.38	1.10
Sturgeon	0.40	76.0	15.4	0.16	0.12
Black Tailed Deer#+	2.47	40.8	293.3	32.4	6.61
Green Plant1	0.37	64.7	16.6	0.90	0.83
Green Plant2	0.32	40.0	15.0	0.12	0.13
Euk1#+	2.31	33.8	260.7	22.8	0.74

Recommend to start with 10x genomics

- Kmer profiles and estimate genome size
- High quality Illumina data for polishing long reads
- Linked read data for scaffolding and haplotyping

- Relatively Cheap
- Best case scenario, adequate genome and can stop

California Condor – PacBio vs 10x

\$70K of PacBio - \$4,000/MB of N50

\$4K of 10X genomics - \$220/MB of N50

NXX <chr></chr>		Length <chr></chr>	NXX <chr></chr>		Length <chr></chr>
N10	2	69,465,997 bp	N10	2	66,331,765 bp
N20	4	44,079,833 bp	N20	5	40,547,711 bp
N30	8	32,030,892 bp	N30	9	27,738,616 bp
N40	12	24,344,512 bp	N40	14	23,855,415 bp
N50	18	17,286,884 bp	N50	20	18,014,548 bp
N60	26	12,594,230 bp	N60	29	13,383,059 bp
N70	38	8,238,335 bp	N70	39	10,933,856 bp
N80	58	4,692,950 bp	N80	55	5,730,001 bp
N90	113	1,106,390 bp	N90	86	2,390,190 bp

The assembly contained 2.82% (35,325,300bp) uncharacterized 'N' basepair.

Black Tailed Deer 10x Genomics Linked Reads Sequencing, Assembled with SuperNova (v2.0.0)

The 10X Supernova assembly resulted in 35,253 contigs for a total final genome size of 2,824,399,154bp. The assembly contained 1.06% (29,905,230bp) uncharacterized 'N' basepair. The GC content of the assembly was 41.57%.

N50, L50 contig values

The N50 length is defined as the shortest sequence length at 50% of the genome. It can be thought of as the point of half of the mass of the distribution; the number of bases from the N50 contig and all contigs longer than the N50 will be close to the number of bases from all contigs shorter than the N50. The summary of the assembly NXX defined similarly is as below.

NXX	LXX	Length
N10	4	60,839,816 bp
N20	10	41,600,771 bp
N30	17	37,902,543 bp
N40	26	27,877,142 bp
N50	37	23,084,682 bp
N60	53	15,190,433 bp
N70	78	8,993,699 bp
N80	117	6,031,357 bp
N90	187	2,541,180 bp

Black Tailed Deer

NXX	LXX.X	Length.X	LXX.nova	Length.nova
N10	4	60,839,816 bp	5	51,704,845 bp
N20	10	41,600,771 bp	11	40,871,444 bp
N30	17	37,902,543 bp	19	33,282,318 bp
N40	26	27,877,142 bp	29	26,153,834 bp
N50	37	23,084,682 bp	41	19,671,835 bp
N60	53	15,190,433 bp	57	15,290,162 bp
N70	78	8,993,699 bp	78	11,622,033 bp
N80	117	6,031,357 bp	110	7,314,267 bp
N90	187	2,541,180 bp	166	2,916,021 bp

Illumina NovaSeq system is comparable to Illumina X system:

• Higher percentage of duplicates (~5%)

Linked Reads allows better phasing

Focus of the Future

- To some extent we are limited by being able to generate enough high quality high molecular weight DNA.
- Continued improvement to sequencing chemistries for consistent and longer reads, quality improvement has become secondary.
- Incremental improvement of the computational algorithms, including improved alignment of error-prone reads (GFA2).
- Scaffolding algorithms, algorithms merge multiple data types/sources (GFA2).
- Polyploidy is now doable
- Haplotyped genomes How to really use the data

Informatics Workshops

Bioinformatics: Genome Assembly and Analysis Workshop [Pac Bio and 10x Genomics]

Dec. 12, 2016, 9:30 a.m. - Dec. 14, 2016, 4:30 p.m.

Organizer - Bioinformatics Core

Contact - UC Davis Bioinformatics Core, training.bioinformatics@ucdavis.edu

Bioinformatics: Single Cell RNA-Seq Workshop @ UCSF

Dec, 2018

March 19, 2018, 9:30 a.m. - March 21, 2018, 4:30 p.m.

Organizer -	Bioinformatics Core
Contact -	UC Davis Bioinformatics Core, training.bioinformatics@ucdavis.edu
Location -	UCSF, Genentech Hall, Mission Bay (Room TBA)

https://registration.genomecenter.ucdavis.edu/

Questions?