So you want to do a Variant Analysis Project

Matt Settles Director, Bioinformatics Core

Treating Bioinformatics as a Data Science

Seven stages to data science

- 1. Define the question of interest
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Fit statistical models
- 6. Communicate the results
- 7. Make your analysis reproducible

Data science done well looks easy and that's a big problem for data scientists

simplystatistics.org March 3, 2015 by Jeff Leek

What is Variant Analysis

The Focus on identification of variation in DNA from genomic, exome, targeted sequencing, or other reduced representation sequencing data.

Variants Include:

- Single Nucleotide Variants (SNV)
- Short insertion/deletions (INDEL)
- Copy number gain/loss (CNV)
- Large novel insertions (> 1kb)
- Inversions

http://varnomen.hgvs.org/recommendations/DNA/

Designing Experiments

Beginning with the question of interest (and working backwards)

• The final step of an analysis is the application of a model to each variant in your dataset.

Traditional statistical considerations and basic principals of statistical design of experiments apply.

- **Control** for effects of outside variables, avoid/consider possible biases, avoid confounding variables in sample preparation.
- Randomization of samples, plots, etc.
- **Replication** is essential (minimum here depends on MAF and how strongly the variant is associated with phenotype)
- You should know your final model and comparison of interest before beginning your experiment.
 - Here a variant predicts a specific phenotype effect which may need to account for background and other variables.

General rules for preparing samples

- Prepare more samples then you are going to need, i.e. expect some will be of poor quality, or fail
- Preparation stages should occur across all samples at the same time (or as close as possible) and by the same person
- Spend time practicing a new technique to produce the highest quality product you can, reliably
- Quality should be established using Fragment analysis traces (pseudo-gel images, for RNA RIN > 7.0)
- DNA/RNA should not be degraded
 - 260/280 ratios for RNA should be approximately 2.0 and 260/230 should be between 2.0 and 2.2. Values over 1.8 are acceptable
- Quantity should be determined with a Fluorometer, such as a Qubit.

Generating libraries

Types of Libraries

- Whole genome shotgun
- **Reduced Representation Libraries**
- Exome capture
- RADseq
- GBS
- Many many others

Genomic Reduction

Genomic reduction allows for greater multiplexing of samples.

You can fine tune your depth of coverage needs and sample size with the reduction technique

Sequenced Basepairs per samples per lane

The first and most basic question is how many base pairs of sequence will I get

Factors to consider then are:

- 1. Number of reads being sequenced
- 2. Read length (if reads are paired, consider them as individuals for this calculations)
- 3. Number of samples being sequenced
- 4. Expected percentage of good bases/reads

$$\frac{bp}{sample} = \frac{readLength*(\#reads)}{\#samples}*0.8$$

The number of reads and read length data are best obtained from the manufacturer's website (search for specifications) and always use the lower end of the estimate.

Genomic Coverage

Once you have the number of base pairs per sample you can then determine expected coverage

Factors to consider then are:

- 1. Length of the genome/capture/target
- 2. Any extra-genomic sequence (ie mitochondria, virus, plasmids, etc.). For bacteria in particular, these can become a significant percentage

	(readLength * numReads) * 0.8	* num lanes
ExpectedCoverage _	numSamples	
sample	TotalGenomicConte	ent

Genomic Coverage – Reduced Representation libraries

Once you have the number of base pairs per sample you can then determine expected coverage

Factors to consider then are:

- 1. Length of the genome/capture/target
- 2. Any extra-genomic sequence (ie mitochondria, virus, plasmids, etc.). For bacteria in particular, these can become a significant percentage
- 3. PCR duplication percentage [Use a higher fudge factor 0.5 to be conservative]

_	(readLength * numReads) * 0.5 * num lane	c
ExpectedCoverage _	numSamples)
sample	TotalGenomicContent	

Sequencing Depth – Counting based experiments

- Coverage is determined differently for "Counting" based experiments (RAD, GBS, etc) where an expected number of reads per site per sample is typically more suitable.
- The first and most basic question is how many reads per sample will I get Factors to consider are (per lane):
 - 1. Number of reads being sequenced
 - 2. Number of samples being sequenced
 - 3. Expected percentage of usable data
 - 4. Number of lanes being sequenced
 - 5. Sites being targeted

• Read length, or SE vs PE, does not factor into sequencing depth.

Sequencing Depth – Counting based experiments Did I sequence enough?

- 'Deep' sequence a number of test samples
- Plot rarefactions curves of sites identifide, to determine if saturation is achieved

Variant Analysis

- Read length contributes to uniqueness of mapping
- Paired reads are required to identify structure changes
- For a single individual target
 > 30x coverage is desired.
- In population studies, the greater the number of samples less coverage per samples that is required. (ex. with 1000 samples 2x coverage per sample may be sufficient)

Take Homes

- Experience and/or literature searches (other peoples experiences) will provide the best justification for estimates on needed depth.
- 'Longer' reads are better than short reads.
- Paired-end reads are more useful than single-end reads
- Libraries can be sequenced again, so do a pilot, perform a preliminary analysis, then sequence more accordingly.

Cost Estimation

- Extractions from tissue (DNA/RNA): cost per sample
- Sample quality assurance. Including quantification and sample degradation evaluation: cost per sample
- Library generation and quantification: cost per sample
- Pooling and quantification of libraries: cost per group
- Sequencing (type if sequencing PE/SE, length of reads, number of lanes / runs): cost per lane/run
- Bioinformatics, general rule is to estimate double your budget)

Bioinformatics Costs

Bioinformatics includes:

- 1. Storage of data
- 2. Access and use of computational resources and software
- 3. System Administration time
- 4. Bioinformatics Data Analysis time
- 5. Back and forth consultation/analysis to extract biological meaning

Rule of thumb:

Bioinformatics can and should cost as much (sometimes more) as the cost of data generation.

Barcodes and Pooling samples for sequencing

- Best to have as many barcodes as there are samples
 - Can purchase barcodes from vendor, generate them yourself and purchase from IDTdna (example), or consult with the DNA technologies core.
- Best to pool all samples into one large pool, then sequence multiple lanes
- IF you cannot generate enough barcodes, or pool into one large pool, RANDOMIZE samples into pools.
 - Bioinformatics core can produce a randomization scheme for you.
 - This must be considered/determined PRIOR to library preparation

Illumina Hiseq sequencing

<u>http://www.illumina.com/systems/hiseq-3000-4000/specifications.html</u>

	HISEQ 3000 SYSTEM	HISEQ 4000 SYSTEM
No. of Flow Cells per Run	1	1 or 2
Data Yield: 2 × 150 bp 2 × 75 bp 1 × 50 bp	650-750 Gb 325-375 Gb 105-125 Gb	1300-1500 Gb 650-750 Gb 210-250 Gb
Clusters Passing Filter (Single Reads) (8 lanes per flow cell)	2.1-2.5 billion	4.3-5 billion
Quality Scores: 2 × 50 bp 2 × 75 bp 2 × 150 bp	≥ 85% bases above Q30 ≥ 80% bases above Q30 ≥ 75% bases above Q30	≥ 85% bases above Q30 ≥ 80% bases above Q30 ≥ 75% bases above Q30
Daily Throughput	> 200 Gb	> 400 Gb
Run Time	< 1-3.5 days	< 1-3.5 days
Human Genomes pe	up to 6	up to 12
Exomes per Run**	up to 48	up to 96
Transcriptomes per F	up to 50	up to 100

Illumina Novaseq Sequencing

<u>Novaseq</u>

Sequencing Output per Flow Cell

	NovaSeq 5000 and 6000 Systems		NovaSeq 6000 System	
Flow Cell Type	S1*	S2	S3*	S4*
2 × 50 bp	up to 167 Gb	280–333 Gb	NA**	NA**
2 × 100 bp	up to 333 Gb	560–667 Gb	NA**	NA**
2 × 150 bp	up to 500 Gb	850–1000 Gb	up to 2000 Gb	up to 3000 Gb

Specifications based on Illumina PhiX control library at supported cluster densities. *The NovaSeq 5000 System, NovaSeq 5000 System Upgrade, and NovaSeq Reagent Kits with S1, S3, or S4 flow cells are not currently available for order. ** NA: not applicable

Reads Passing Filter

	NovaSeq 5000 and 6000 Systems		NovaSeq 6000 System	
Flow Cell Type	S1*	S2	S3*	S4*
	up to 1.6 B	2.8–3.3 B	up to 6.6 B	up to 10 B

Cost Estimation (exercise 1)

- DNA/RNA extraction and QA/QC (Per sample)
- library preparation (Per sample)
 - Library QA/QC (Bioanalyzer and Qubit)
 - Any enrichment technique
- Sequencing (Number of lanes)
- Bioinformatics (General rule is to estimate the same amount as data generation, i.e. double your budget)

http://dnatech.genomecenter.ucdavis.edu/prices/

Example: DNA - 32 human samples, Agilent SureSelect V6 (use ~75Mb and \$500/library), target ~ 100x coverage per exon, sequence on Hiseq 4000.

Cost Estimation (exercise 2)

Example: DNA- 18 human samples, whole genome library, target > 30x average coverage on the Novaseq – 2x150

Use \$16,200 per Novaseq S2 2x150bp run

Cost Estimation (exercise 2)

Example: DNA- 18 human samples, whole genome library, target > 30x average coverage on the Novaseq – 2x150

Use \$16,200 per Novaseq S2 2x150bp run

Overview of Variant data analysis

Prerequisites

- Access to a multi-core (24 cpu or greater), 'high' memory 64Gb or greater Linux server.
- Familiarity with the 'command line' and at least one programming language.
- Basic knowledge of how to install software
- Basic knowledge of R (or equivalent) and statistical programming
 - Basic knowledge of Statistics and model building

Variant pipeline overview [GATK example]

