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Applications

- Heterogeneity analysis
- Cell-type identification

- Cellular states in differentiation and developmental
processes

- Splicing patterns



Cell types

- Function
- Function at specific tissue

- Populations and subpopulations

- Cell states (cell cycles, active/inactive, apoptosis,
etc.)



Academic single-cell methods

Improving throughput (n. of cells)
Robustness (varying quality of samples)

Complexity (n. of unique transcripts per cell)

Accuracy (low technical noise; many cells — shallow
sequencing)
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Single-cell sequencing technologies
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Single-cell sequencing technologies
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Single-cell sequencing technologies
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REVOLUTIONARY NEW
SINGLE-CELL PLATFORM

1. Isolate up-to 1,800 cells per chip

2. Evaluate cells from 5-100 um per sample
3. Select specific cells for downstream applications

4. Discover unique populations of cells



Cell isolation

low number of cells
any tissue
enables sclection of cells
MMW“
visualisation of cells

time consuming
reaction in microliter
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Kolodziejczyi A et al., Molecular Cell, 2015



Cell suspensions

Mechanical/enzymatic dissociation:
- bias for specific subpopulations

- Different dissociation kinetics compared to their normal
counterparts or between samples of the same disease
- No duplets = microscopy

Affects:
Robustness (varying quality of samples)

Accuracy (high technical noise)



Protocols
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Cell isolation

Stochastic gene expression

Gene 1
Gene 2
Gene 3

- - 1
Qene <
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Reverse

transcription
“random” selection
of 10-40% of mRNAs
- Drop-outs

Amplification
May have bias due to
length, structure, gc-content

Asa Bjérklund - NBIS



Some theory

Drop-out = the transcript is present in the cell but not
detected due to missed conservation to cDNA

Transcriptional bursting = the transcript is present in
most cells of a specific cell-type but not in every cell

Lowly expressed transcript = drop-out or low bursting?



Reverse Transcription (RT)

The sensitivity depends on the efficiency of the
reverse transcription reaction = drop-out rate between
90 to 60% depending on methods

polyA tailing + second strand synthesis template switching
polyT priming —(\AANNAPNAANANN
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Tang protocol (Tang et al 2009)
CELseq/MARSsoq (Hashimony et al. 2013, Jaitin et al. 2014) SmartSeq/SmartSeq2 (Ramskold et al. 2012, Deng et al. 2014)
QuartzSeq (Sasagawa et al. 2013) STRT (Islam et al. 2011)

Kolodziejczyi A et al., Molecular Cell, 2015



Amplification

PCR | - vT
- exponential amplification % - linear amplification -
g . 4
- PCR base specific biases E - 3’ bias due to two rounds 'g
. of reverse transcription =
cyc # cycles
Tang protocol (Tang et al. 2009)
STRT (Islam et al. 2011)
SmartSeq/SmartSeq2 (Ramskold et al. 2012, Deng et al. 2014) CELsoq/MARSseq (Hashimony et al. 2013, Jaitin ot al. 2014)

Kolodziejczyi A et al., Molecular Cell, 2015

Amplification steps introduce bias in the data

UMis allows to avoid PCR duplicates



Differences between single-cell and bulk RNA-seq

- Amplification bias

- Drop-out

- Transcriptional bursting

- Background noise

- Bias due to cell-cycle, cell size
- Clear batch effects



How to analyze the data

Mapping - STAR

QC analysis — number of genes

Filtering

Normalization — SCRAN (Aaron et al., Genoome Biology, 2016)

Dimensionality reduction
Clustering, marker genes, annotation

Differential gene expression
Trajectory



Useful tools - Seurat

R toolkit for single-cell genomics

Guided Tutorial --- 2,700 PBMCs Guided Tutorial - Stimulated vs. Control PBMCs
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Useful tools — SC3

Single-cell Consensus Clustering

Input Gene Filter Distances Transformations
Euclidean PCA
Pearson Laplacian
Spearman

N cells

Noots
e *

Kiselev et al.,
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Nature Methods, 2017



Other tools

Pagoda (httn./hms-dbmi.github.io/scde/pagoda htm!)

#PC1# geneCluster.15

#PC1# GO:0000280

#PC1# GO:0022008


http://hms-dbmi.github.io/scde/pagoda.html

Other tools

- Pagoda (atte: -
- Graphs (atte:/Zigraph.ora/r/)
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http://hms-dbmi.github.io/scde/pagoda.html
http://igraph.org/r/

Dimensionality reduction step

Convert high-dimensional data to a more simplified representation,
while maintaining the main characteristics of the data in the original
space.

scRNA-Seq

‘ .
Dimension
reduction
_

Kumar et al. Development, 2017



Dimensionality reduction step

Dimensionality reduction techniques:

- PCA (linear projection of the data such that the variance is preserved in the new space)
- independent component analysis (ICA)

- t-stochastic neighbor embedding (t-SNE) able to detect nonlinear
- diffusion maps relationships between cells

- Graph-based techniques
cells = nodes in a graph
edges =connect transcriptionally similar cells

It retains the most important edges in the graph = scales well to large
numbers of cells (n > 10 000)



Trajectory inference



The basics

Cells display a continuous spectrum of states (i.e. activation
and/or differentiation process)

Individual cells are executing through a gene expression program
in an unsynchronized manner = each cell is a snapshot of the

transcriptional program under study

sc-omics technologies allow to model biological systems



The basics

Discrete classification of cells is not appropriate

Summary of the continuity of cell states in the data
- Trajectory Inference (T|) (or pseudotemporal ordering)




What is a frajectorye

Sequence of gene expression changes each cell must go through
as part of a dynamic biological process

O\f
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What is a frajectorye

Sequence of gene expression changes each cell must go through
as part of a dynamic biological process

\N-a

Track changes in gene expression:
- function of time
- function of progress along the trajectory



What is a frajectorye

Sequence of gene expression changes each cell must go through
as part of a dynamic biological process

-

Track changes in gene expression:
- function of time
- function of progress along the trajectory

Pseudotime —> abstract unit of progress:
distance between a cell and the start of the trajectory



How do Tl tools worke

A

1. Population of single cells = different stages R ouow.

Synchronized f s ‘
cell populations Ae

2. Computational tools to order cells along a trajectory topology

Automatic reconstruction of a cellular dynamic process by @71

structuring individual cells sampled and profiled from that process

S

3. Identify the different stages in the dynamic process R
and their interrelationships 1f"walt-:~c=-m:w:

Cannot et al., Eur. J. Immun, 2016
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What Tl offers

A

Snapshot of

Synchronized
cell populations

OR

* Unbiased and transcriptome-wide understanding
of a dynamic process

* They allow the objective identification
of new subsets of cells

Cannot et al., Eur. J. Immun, 2016
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Type of trajectories

Trajectory’s total length: total amount of transcriptional change
that a cell undergoes at it moves from the starting to the end
state

Linear trajectories Branched trajectories

Linear, branched, or a more complex tree or graph structure



Type of input data

e Transcriptome-wide data

 Starting cell from which the trajectory will originate

* Set of important marker genes, or even a grouping of cells
into cell states.



Input data — potential risks

Providing prior information:

can help the method to find the correct trajectory
among many, equally likely, alternatives

IF available, can bias the trajectory
towards current knowledge




How Tl tools usually work

1. conversion of data to a simplified representation using:
- dimensionality reduction
- clustering
- graph building

2. ordering the cells along the simplified representation:

- identify cell states
- constructing a trajectory through the different states

- projecting cells back to the trajectory



Tools available

59 methods - unique
combination of characteristics:

- required input

- methodology used

- produced outputs
(topology fixing and
trajectory type)

Saelens et al., bioRxiv, 2018
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Topology of the trajectory

Topology of the trajectory:

- fixed by design

Early methods

Mainly focused on correctly ordering the cells along the fixed topology

- inferred computationally

Increased difficulty of the problem
Broadly applicable on more use cases
Topology inference still in the minority



Tool classification

Tl methods classified also on a set of algorithmic components:

- Performance

- Scalability

- Output data structures



Monocle 2

Monocle introduced the concept of pseudotime

Now it has a complete new version - has been rated one of
the most performing methods



Monocle 2

Trajectory inference workflow:
1. Choosing genes to order the data

2. Reducing dimensionality of the data

3. Ordering cells in pseudotime



Fates of human fetal heart cells

Component 2

differentiated

stem-like

State @ 2@ ®

* Branch 1

Branch 2

«— Start-point

0 10 20

stem-like differentiated'

<&
<

Component 1

S(:i;;f:Lab



Fates of human fetal heart cells
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Fates of human fetal heart cells
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