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Single-cell RNA-sequencing



Applications

- Heterogeneity analysis
- Cell-type identification
- Cellular states in differentiation and developmental 

processes
- Splicing patterns



Cell types

- Function
- Function at specific tissue
- Populations and subpopulations
- Cell states (cell cycles, active/inactive, apoptosis, 

etc.)



Academic single-cell methods

Improving throughput (n. of cells)
Robustness (varying quality of samples)
Complexity (n. of unique transcripts per cell)
Accuracy (low technical noise; many cells – shallow
sequencing)

Kolodziejczyi A et al., Molecular Cell, 2015
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Cell isolation

Kolodziejczyi A et al., Molecular Cell, 2015



Cell suspensions

Mechanical/enzymatic dissociation:
- bias for specific subpopulations
- Different dissociation kinetics compared to their normal 

counterparts or between samples of the same disease
- No duplets à microscopy

Affects:
Robustness (varying quality of samples)

Accuracy (high technical noise)



Protocols

Zieghain et al., Molecular Cell, 2017



Cell isolation

Åsa Björklund - NBIS



Some theory

Drop-out = the transcript is present in the cell but not 
detected due to missed conservation to cDNA

Transcriptional bursting = the transcript is present in 
most cells of a specific cell-type but not in every cell

Lowly expressed transcript = drop-out or low bursting?



Reverse Transcription (RT)

The sensitivity depends on the efficiency of the 
reverse transcription reaction à drop-out rate between 
90 to 60% depending on methods

Kolodziejczyi A et al., Molecular Cell, 2015



Amplification

Kolodziejczyi A et al., Molecular Cell, 2015

Amplification steps introduce bias in the data

UMIs allows to avoid PCR duplicates



Differences between single-cell and bulk RNA-seq

- Amplification bias
- Drop-out
- Transcriptional bursting
- Background noise
- Bias due to cell-cycle, cell size
- Clear batch effects



How to analyze the data

- Mapping - STAR
- QC analysis – number of genes
- Filtering 
- Normalization – SCRAN (Aaron et al., Genoome Biology, 2016)
- Dimensionality reduction
- Clustering, marker genes, annotation
- Differential gene expression
- Trajectory



Useful tools - Seurat

R toolkit for single-cell genomics

https://satijalab.org/seurat/



Useful tools – SC3

Single-cell Consensus Clustering

Kiselev et al., Nature Methods, 2017



Other tools

- Pagoda (http://hms-dbmi.github.io/scde/pagoda.html)

http://hms-dbmi.github.io/scde/pagoda.html


Other tools

- Pagoda (http://hms-dbmi.github.io/scde/pagoda.html)
- Graphs (http://igraph.org/r/)

http://hms-dbmi.github.io/scde/pagoda.html
http://igraph.org/r/


Dimensionality reduction step

Convert high-dimensional data to a more simplified representation, 
while maintaining the main characteristics of the data in the original 
space. 

Kumar et al. Development, 2017



Dimensionality reduction step

Dimensionality reduction techniques:

- PCA (linear projection of the data such that the variance is preserved in the new space)
- independent component analysis (ICA)

- t-stochastic neighbor embedding (t-SNE) 
- diffusion maps

- Graph-based techniques
cells = nodes in a graph
edges =connect transcriptionally similar cells 
It retains the most important edges in the graph à scales well to large 
numbers of cells (n > 10 000)

able to detect nonlinear 
relationships between cells



Trajectory inference



The basics

Cells display a continuous spectrum of states (i.e. activation 
and/or differentiation process)

Individual cells are executing through a gene expression program 
in an unsynchronized manner à each cell is a snapshot of the 
transcriptional program under study

sc-omics technologies allow to model biological systems



The basics

Summary of the continuity of cell states in the data
à Trajectory Inference (TI) (or pseudotemporal ordering)

Discrete classification of cells is not appropriate



What is a trajectory?

Sequence of gene expression changes each cell must go through 
as part of a dynamic biological process
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What is a trajectory?

Sequence of gene expression changes each cell must go through 
as part of a dynamic biological process

Track changes in gene expression:
- function of time
- function of progress along the trajectory

Pseudotime à abstract unit of progress:
distance between a cell and the start of the trajectory



How do TI tools work?

1. Population of single cells à different stages

2. Computational tools to order cells along a trajectory topology 
Automatic reconstruction of a cellular dynamic process by 
structuring individual cells sampled and profiled from that process 

3. Identify the different stages in the dynamic process
and their interrelationships

Cannot et al., Eur. J. Immun, 2016



What TI offers

• Unbiased and transcriptome-wide understanding 
of a dynamic process

• They allow the objective identification
of new subsets of cells

Cannot et al., Eur. J. Immun, 2016



Type of trajectories

Trajectory’s total length: total amount of transcriptional change 
that a cell undergoes at it moves from the starting to the end 
state

Linear, branched, or a more complex tree or graph structure 



Type of input data

• Transcriptome-wide data

• Starting cell from which the trajectory will originate 

• Set of important marker genes, or even a grouping of cells 
into cell states. 



Input data – potential risks

Providing prior information: 

can help the method to find the correct trajectory 
among many, equally likely, alternatives

IF available, can bias the trajectory
towards current knowledge 



How TI tools usually work

1. conversion of data to a simplified representation using: 
- dimensionality reduction 
- clustering 
- graph building 

2. ordering the cells along the simplified representation:
- identify cell states 
- constructing a trajectory through the different states 
- projecting cells back to the trajectory



Tools available

59 methods - unique 
combination of characteristics: 

- required input

- methodology used

- produced outputs 
(topology fixing and 
trajectory type) 

Saelens et al., bioRxiv, 2018



Topology of the trajectory

Topology of the trajectory: 

- fixed by design

Early methods 
Mainly focused on correctly ordering the cells along the fixed topology

- inferred computationally

Increased difficulty of the problem 
Broadly applicable on more use cases 
Topology inference still in the minority



Tool classification

TI methods classified also on a set of algorithmic components:

- Performance

- Scalability

- Output data structures 



Monocle 2

Monocle introduced the concept of pseudotime

Now it has a complete new version - has been rated one of 
the most performing methods



Monocle 2

Trajectory inference workflow:

1. Choosing genes to order the data

2. Reducing dimensionality of the data

3. Ordering cells in pseudotime
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