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Sequencing Platforms

* 1986 - Dye terminator Sanger sequencing, peaking at about 900kb/day in
early 2000s

2
O
O
S
-5
=
e
=
.0
(a8
L
>
-
o
O
-



‘Next” Generation

e 2005 - ‘Next Generation Sequencing’ as Massively parallel sequencing, both
throughput and speed advances. The first was the Genome Sequencer (GS)
instrument developed by 454 life Sciences (later acquired by Roche),
Pyrosequencing 1.5Gb/day

Discontinued
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Illumina (Solexa)

* 2006 — The second ‘Next Generation Sequencing’ platform. Now the
dominant platform with 75% market share of sequencer and and estimated

>90% of all bases sequenced are from an Illumina machine, Sequencing by
Synthesis > 1600Gb/day.

n

NovaSeq HiSeq
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Complete Genomics

e 2006 — Using DNA nanoball sequencing, has been a leader in Human genome
resequencing, having sequenced over 20,000 genomes to date. In 2013
purchased by BGIl and is now set to release their first commercial sequencer,
the Revolocity. Throughput on par with HiSeq
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Human genome/exomes only.

10,000 Human Genomes per year
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Bench top Sequencers

*»Life Technologies
. lon Torrent

u lon Proton
= Gene Studio S5

*lllumina |

. MiSeq -

. MiniSeq

= iSeq 100 R
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The ‘Next, Next” Generation Sequencers
(379 Generation)

e 2009 - Single Molecule Read Time sequencing by Pacific Biosystems, most
successful third generation sequencing platforms, RSIl ~2Gb/day, newer Pac
Bio Sequel ~14Gb/day, near 100Kb reads.

SMRT Sequencing

Iso-seq on Pac Bio possible, transcriptome without ‘assembly’
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https://www.youtube.com/watch?v=NHCJ8PtYCFc

SmidglON: nanopore sensing for use with mobile devices

Oxford Nanopore

« 2015 — Another 3" generation sequencer, founded in 2005 and
currently in beta testing. The sequencer uses nanopore technology
developed in the 90’s to sequence single molecules. Throughput is
about 500Mb per flowcell, capable of near 200kb reads.

Fun to play with but results
are highly variable

Nanopore Sequencing

FYI: 4th generation sequencing is being described
as In-situ sequencing
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https://www.youtube.com/watch?v=3UHw22hBpAk

Bioinformatics

Old Way of
thinking about
Bioinformatics
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Sequencing Costs

Dollars

Cost per Megabase of Sequence

$0.014/Mb
$100 7 lllumina
First ‘NGS’ HiSeq 2000
Sequencers
llumina
$1 7 X10 System
$0.01
| |
2005 2010 2015

Year

February 2019
Cost per Human Sized Genome @ 30x (lllumina)
$1,301 per
$10000000 — Human sized
(30x) genome
$100000 —
$1000

2005 2010 2015

Year

* Includes: labor, administration, management, utilities, reagents,
consumables, instruments (amortized over 3 years), informatics related to
sequence productions, submission, indirect costs.

* http://www.genome.gov/sequencingcosts/



Growth in Public Sequence Database
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= 4 WGS > 1 trillion bp f / /
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Growth of the Sequence Read Archive (SRA) over time

Bases
10
|
Sequences
1

—O0— GenBank —0— GenBank
o —o— WGS R —o— WGS
T T T T T T
1990 2000 2010 1990 2000 2010
Year Year

* http://www.ncbi.nlm.nih.gov/genbank/statistics

http://www.ncbi.nInYﬂea:nih.gov/Traces/sra/
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llumina’s Flexibility
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Sequencing Libraries : MLA-seq

DNA-seq DNase-seq tagRNA-seq EnD-seq

RNA-seq  ATAC-seq  PAT-seq Pool-seq
Amplicons  \iNase-seq  Structure-seq G&T-seq
CHiP-.seq FAIRE-seq MPE-seq Tn-Seq

:I:I;)-Ispe_:eq Ribose-seq STARR-seq BrAD-seq
ddRAD-seq smRNA-seq Mod-seq SLAF-seq

Methods. 2018 Jun 11. pii: S1046-2023(18)30064-1. doi: 10.1016/j.ymeth.2018.06.004. [Epub ahead of print]

fCLIP-seq for transcriptomic footprinting of dsRNA-binding proteins: lessons from
DROSHA.

Kim B', Kim VN2.
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UCDAVIS Bioinformatics Core
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The data deluge
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* Plucking the biology from the Noise
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Reality

T T B
R INTERPE :IC[ e

* [ts much more difficult than we may first think
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Data Science
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Five Fundamental Concepts of Data Science
statisticsviews.com November 11, 2013 by Kirk Borne




/ Stages to Data Science

1. Define the question of interest

2. Get the data
3. Clean the data
4. Explore the data

5. Fit statistical models

6. Communicate the results
7. Make your analysis reproducible
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1. Define the question of interest

Begin with the end in mind!
what is the question
how are we to know we are successful
what are our expectations

dictates

the data that should be collected
the features being analyzed
which algorithms should be use
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2. Get the data
3. Clean the data -
4. Explore the data i U2

Know your data!
know what the source was
technical processing in producing
data (bias, artifacts, etc.)
“Data Profiling”

Data are never perfect but love your data anyway!
the collection of massive data sets often leads to unusual ,
surprising, unexpected and even outrageous.



5. Fit statistical models =~ Machine Learning

Over fitting is a sin against data science!
Model’s should not be over-complicated

* |f the data scientist has done their job
correctly the statistical models don't
need to be incredibly complicated to
identify important relationships

* |n fact, if a complicated statistical :
model seems necessary, it often meang
that you don't have the right data to
answer the question you really want to
answer.
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6. Communicate the results
7. Make your analysis reproducible

Remember that this is ‘science’!
We are experimenting with data selections,
processing, algorithms, ensembles of
algorithms, measurements, models. At some = 1
point these must all be tested for validity and _‘.,, \fz i Q | ‘
applicability to the problem you are tryingto .« m? {&({@
solve. S g ‘4
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Bad data science (bioinformatics) also looks easy
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The Data Science in Bioinformatics

“The best bioinformaticians | know are problem solvers — they
start the day not knowing something, and they enjoy finding out
(themselves) how to do it. It’s a great skill to have, but for most,
it’s not even a skill — it’s a passion, it’s a way of life, it’s a thrill. It’s
what these people would do at the weekend (if their families let
them).”

Mick Watson — Rosland Institute



“The real cost of sequencing”

© = . 0 Sample collectloq and [ Sequencing Data reduction Downstream
e Experimental experimental design [l Data management analyses
Sample design
collection
E l 100% _
o Sequencing
= 1 1
© mm—m - Raw reads
C (FASTA, FASTQ)
O g
O mmm g
m @) Mapped reads
© (BAM, CRAM, MRF)
c
©
\
S —
High-level summaries
(VCF, Peaks, RPKM)
Downstream analyses
0% ~

(differential expression,
novel TARs, regulatory Pre-NGS Now Future

networks, .--) (Approximately 2000)  (Approximately 2010)  (Approximately 2020)

Sboner et al. Genome Biology 2011 12:125 doi:10.1186/gb-2011-12-8-125




Old (Current) Model - Genomics

Technology Computing

Data Generation Data Reduction

Molecular Data Generation Bioinformatics
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Investigator Experimental Design and Analysis




Needed Model - Genomics

Data Generation

Molecular Data
Generation

Data Reduction = — — = Technology

Genomics
Coordinator
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Investigator Bioinformatics

. - Data AMalysis® = — — — Computing
Bioinformaticia
nasa

Data Scientist

Bio-Statistics
Support




Genomics Coordinator — Data Scientist

Computational Biology
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Biostatistics Bioinformatics

‘The data scientist role has been described as “part analyst, part artist.”’
Anjul Bhambhri, vice president of big data products at IBM
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“The real cost of sequencing”

0 Sample collection and [ Sequencing

Sample
collection

. B

design
100% _

1 B

Raw reads
(FASTA, FASTQ)

Mapped reads
(BAM, CRAM, MRF)

High-level summaries
(VCF, Peaks, RPKM)

. B

Downstream analyses

Data reduction Downstream
Experimental experimental design [l Data management analyses

(differential expression, 0% =
novel TARs, regulatory Pre-NGS Now

networks, ...) (Approximately 2000)  (Approximately 2010)

Sboner et al. Genome Biology 2011 12:125 doi:10.1186/gb-2011-12-8-125

Future
(Approximately 2020)

Genomics

Coordinator
—

Bioinformatics
Data Scientist



Training - Models

* Workshops

e Often enrolled too late

e (Collaborations
* More experience persons

* Apprenticeships
* Previous lab personnel to young personnel
 Formal Education

* Most programs are graduate level
* Few Undergraduate
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Substrate

Computing Computing
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Environment

“Command Line” and “Programming Languages”

aeatve. @ python’

commons

. SIECO -
J Bioconductor BIORBTN

VS

Bioinformatics Software Suite

Cacbio genelous
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Prerequisites for doing Bioinformatics

e Access to a multi-core (24 cpu or greater), ‘high’ memory 64Gb or
greater Linux server.

* Familiarity with the ‘command line’ and at least one programming
language.

 Basic knowledge of how to install software
 Basic knowledge of R (or equivalent) and statistical programming

* Basic knowledge of Statistics and model building
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The last mile
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http://www.bikeblanket.com/blog/suisse




The Bottom Line:
In Genomics
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