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Purpose

The sequencing of the transcriptomes of single-
cells, or single-cell RNA-sequencing, has now
become the dominant technology for the
identification of novel cell types and for the study
of stochastic gene expression.

Single-cell transcriptomics determines what genes
(and in what relative quantity) are being expressed
in each cell.
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Major reasons to conduct single cell analysis

Bulk RNAseq, where you measure the ‘average’ expression of all
constituent cells, is sometimes insufficient for some experimental
guestions.

* Gene dynamics - what changes in gene expression effect different cell
characteristics, such as during differentiation

* RNA splicing — cell to cell variation in alternative splicing

* Cell typing - genes expressed in a cell are used to identify types of
cells. The main goal in cell typing is to find a way to determine the
identity of cells that don't have known genetic markers.

 Spatial Transcriptomics — isolation of cells with known spatial
location.
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Spatial Transcriptomics (and single cell)
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Designing Experiments

Beginning with the question of interest ( and working backwards )

* The final step of a DE analysis is the application of a linear model to
each gene in your dataset.

Traditional statistical considerations and basic principals of statistical design of
experiments apply.

* Control for effects of outside variables, avoid/consider possible biases, avoid
confounding variables in sample preparation.

 Randomization of samples, plots, etc.
* Replication is essential (triplicates are THE minimum)

* You should know your final (DE) model and comparison contrasts
before beginning your experiment.
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How many cells to target?

* The number of cells to target can be estimated based on:
* The expected heterogeneity of all cells in a sample
 The minimum frequency expected of a particular cell type within the sample, and
 The minimum number of cells of each type desired in the resulting data set.

* With this information, a negative binomial distribution can be used to
estimate the number of cells likely to capture at least a set number of cells
from your rarest cell type.

* For example, if we sequence a mixture of ~10 cell types where the
frequency of the rarest cell type is ~0.03, then we would need to sequence
~2200 cells to have a 90% chance of capturing at least 50 of those rare
cells.

www.satijalab.org/howmanycells

0
O
O
S
=
=
e
=
0
(a8
=
2
o
O
-


http://www.satijalab.org/howmanycells

General rules for preparing samples

* Prepare more samples then you are going to need, i.e. expect some will be of
poor quality, or fail

* Preparation stages should occur across all samples at the same time (or as
close as possible) and by the same person

* Spend time practicing a new technique to produce the highest quality product
you can, reliably
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Comparison to RNA-seq libraries

Considerations
* QA/QC of RNA-samples Cells [Consistency across samples is most important.]

‘Cleanliness’ of cells and accurate cell counts

 What is the RNA of interest [polyA extraction is pretty universal]

* Library Preparation
e Stranded Vs. Unstranded [Standard is pretty universal]

* Size Selection/Cleanup [Target kit recommendations]
* Final QA [Consistency across samples remains most important.]

0
O
O
N
2
5
=
L
=
0
(a8
L
>
I
o
O
-



Elements of a Library

 Library Barcode (Sample Index) - Used to pool multiple
samples on one sequencing lane

* Cell Barcode (10x Barcode) — Used to identify the cell the
read came from

* Unique Molecular Index (UMI) — Used to identify reads that
arise during PCR replication

* Sequencing Reads — Used to identify the gene a read came
from Read 1:28 7:8

10xBC+UMI Sample
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Sequencing Depth

* Coverage is determined differently for “Counting” based experiments
(RNAseq, amplicons, etc.) where an expected number of reads per cell is
typically more suitable.

* The first and most basic question is how many reads per cell will | get
Factors to consider are (per lane):

1. Number of reads being sequenced
2. Number of cells being sequenced (estimates)
3. Expected percentage of usable data

reads reads.sequenced * (.8

cell cells.pooled

* Read length, or SE vs PE, does not factor into sequencing depth.
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Sequencing - Characterization of transcripts,
or differential gene expression

Factors to consider are:

* Read length needed depends on likelihood of mapping uniqueness, but generally longer
is better and paired-end is better than single-end (except when its not) ( 75bp or greater

is best ).
e Complexity of sample, >> complexity -> the >> depth.
* Interest in measuring genes expressed at low levels, << level -> the >> depth.

* The fold change you want to be able to detect ( < fold change more replicates and more
depth).

* Detection of novel transcripts, or quantification of isoforms (full-length libraries) requires
>> sequencing depth. [NON 3’ based methods]

The amount of sequencing needed for a given experiment is best determined by
the goals of the experiment and the nature of the sample.
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Validated on
. * Novaseq
Sequencing, V3 . HiSeq 4000
* HiSeq 2500 Rapid Run

] * NextSeq
Recommendation ¢ MiSeq

e 20,000* raw reads per cell is the recommended sequencing depth for ‘typical’ samples.

* Given variability in cell counting/loading, extra sequencing may be required if the cell count is higher than
anticipated.

*Adjust sequencing depth for the required performance or application. The Sequencing Saturation metric and

curve in the Cell Ranger run summary can be used to optimize sequencing depth for specific sample types.

sequencing run, with 3 reads, V3 kits

Sequence Read Minimum Length Read Description

Read 1 28bp (16bp bc, 12bp UMI) barcode and UMI
|7 Index 8bp Sample Index Read
Read?2 100bp Transcript Tag

**Shorter transcript reads may lead to reduced transcriptome alignment rates. Cell barcode, UMI and Sample
index reads must not be shorter than indicated. Any read can be longer than recommended.

@ full capacity 10,000 cells per sample and 20K reads per cell = 200M reads or ~0.5 lanes/sample
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llumina sequencing

HiSeq 3000 System
No. of Flow Cells per Run 1

Data Yield - 2 x 150 bp 650-750 Gb

' Data Yield - 2 x 75 bp 325-375 Gb

Data Yield - 1 x 50 bp 105-125 Gb

Clusters Passing Filter (8 lanes per flow cell) q up to 2.5B single reads or 5B paired end reads

Quality Scores - 2 x 50 > 85% bases above Q30
Quality Scores -2 x 75 = 80% bases above Q30
Quality Scores - 2 x 150 bp = 75% bases above Q30
Daily Throughput > 200 Gb

Run Time < 1-3.5 days

Human Genomes per Run* upto 6

Exomes per Run' up to 48
Transcriptomes per Run? up to 50

HiSeq 4000 System
1or2

1300-1500 Gb

650-750 Gb

210-250 Gb

up to 5B single reads or 10B PE reads
> 85% bases above Q30
= 80% bases above Q30
= 75% bases above Q30
> 400 Gb

< 1-3.5 days

up to 12

up to 96

up to 100

http://www.illumina.com/systems/hiseg-3000-4000/specifications.html



http://www.illumina.com/systems/hiseq-3000-4000/specifications.html

Cost Estimation

* Cell Isolation
* Library preparation (Per sample/pool)
e Sequencing (Number of lanes)

e Bioinformatics

General rule is to estimate the same dollar amount as data generation, i.e. double your
budget

http://dnatech.genomecenter.ucdavis.edu/prices/

http://bioinformatics.ucdavis.edu/services-2/
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Be Consistent

BE CONSISTENT ACROSS ALL SAMPLES!!!
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The Bottom Line:
In Genomics
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