Experimental Design Microbial Sequencing

Matthew L. Settles Genome Center Bioinformatics Core University of California, Davis settles@ucdavis.edu; bioinformatics.core@ucdavis.edu Goal: A culture independent method for profiling the diversity of a community.

High-throughput sequencing technologies (such as Illumina) can sequence millions of amplicons, across thousands of samples in a single run, and are today our best approach to deeply assess the environmental or clinical diversity of complex microbial assemblages of archaea, bacteria, and eukaryotes.

Using sequence variation within a common gene (e.g. 16s) to assign and count community members rather than counting individual cells. Assume each sequence variant is one community member.

Treating Bioinformatics as a Data Science

Seven stages to data science

- 1. Define the question of interest
- 2. Get the data
- 3. Clean the data
- 4. Explore the data
- 5. Fit statistical models
- 6. Communicate the results
- 7. Make your analysis reproducible

Data science done well looks easy and that's a big problem for data scientists

simplystatistics.org March 3, 2015 by Jeff Leek

Designing Experiments

Beginning with the question of interest (and work backwards)

- The final step of an analysis is the application of statistical models. Traditional statistical considerations and basic principals of statistical design of experiments apply.
 - **Control** for effects of outside variables, avoid/consider possible biases, avoid confounding variables in sample preparation.
 - Randomization of samples, plots, etc.
 - Replication is essential (triplicates are THE minimum)
- You should know your final statistical model and comparisons before beginning your experiment.

General rules for preparing an experiment and samples

- Prepare more samples then you are going to need, i.e. expect some will be of poor quality, or fail
- Preparation stages should occur across all samples at the same time (or as close as possible) and by the same person
- Spend time practicing a new technique to produce the highest quality product you can, reliably
- Quality should be established using Fragment analysis traces (pseudo-gel images, RNA RIN > 7.0)
- DNA/RNA should not be degraded
 - 260/280 ratios for RNA should be approximately 2.0 and 260/230 should be between 2.0 and 2.2. Values over 1.8 are acceptable
- Quantity should be determined with a Fluorometer, such as a Qubit.

Sample preparation

In high throughput biological work (Microarrays, Sequencing, HT Genotyping, etc.), what may seem like small technical details introduced during sample extraction/preparation can lead to large changes, or technical bias, in the data.

Not to say this doesn't occur with smaller scale analysis such as Sanger sequencing or qRT-PCR, but they do become more apparent (seen on a global scale) and may cause significant issues during analysis.

Be Consistent

BE CONSISTENT ACROSS ALL SAMPLES!!!

Illumina MISEQ SEQUENCING

Cluster Generation and Sequencing								
	MiSeq Reagent Kit v2				MiSeq Reagent Kit v3			
Read Length	1 × 36 bp	2 × 25 bp	2 × 150 bp	2 × 250 bp	2 × 75 bp	2 × 300 bp		
Total Time*	~4 hrs	~5.5 hrs	~24 hrs	~39 hrs	~21 hrs	~56 hrs		
Output	540-610 Mb	750-850 Mb	4.5–5.1 Gb	7.5–8.5 Gb	3.3–3.8 Gb	13.2–15 Gb		

	MiSeq Reagent Kit v2 Micro	MiSeq Reagent Kit v2 Nano			
Read Length	2 × 150 bp	2 × 250 bp	2 × 150 bp		
Total Time*	~19 hrs	~28 hrs	~17 hrs		
Output	1.2 Gb	500 Mb	300 Mb		

* Total time includes cluster generation, sequencing, and base calling on a MiSeq System enabled with dual-surface scanning.

Reads Passing Filter**

	MiSeq Reagent Kit v2	MiSeq Reagent Kit v3	MiSeq Reagent Kit v2 Micro	MiSeq Reagent Kit v2 Nano	
Single Reads	12-15 million	22-25 million	4 million	1 million	
Paired-End Reads	24–30 million	44–50 million	8 million	2 million	

** Install specifications based on Illumina PhiX control library at supported cluster densities (865-965 k/mm² clusters passing filter for v2 chemistry and 1200-1400 k/mm² clusters passing filter for v3 chemistry). Actual performance parameters may vary based on sample type, sample quality, and clusters passing filter.

Quality Scores[†]

MiSeq Reagent Kit v2	MiSeq Reagent Kit v3
$>90\%$ bases higher than Q30 at 1 \times 36 bp	$>85\%$ bases higher than Q30 at 2 \times 75 bp
> 90% bases higher than Q30 at 2 × 25 bp	$>70\%$ bases higher than Q30 at 2 \times 300 bp
> 80% bases higher than Q30 at 2 × 150 bp	
$> 75\%$ bases higher than Q30 at 2 \times 250 bp	

† A quality score (Q-score) is a prediction of the probability of an error in base calling. The percentage of bases > Q30 is averaged across the entire run

Illumina HiSeq sequencing costs I use 350N

I use 350M fragments per lane

	HiSeq 3000 System	HiSeq 4000 System
No. of Flow Cells per Run	1	1 or 2
Data Yield - 2 × 150 bp	650–750 Gb	1300–1500 Gb
Data Yield - 2 × 75 bp	325–375 Gb	650–750 Gb
Data Yield - 1 × 50 bp	105–125 Gb	210–250 Gb
Clusters Passing Filter (8 lanes per flow cell)	up to 2.5B single reads or 5B paired end reads	up to 5B single reads or 10B PE reads
Quality Scores - 2 × 50	≥ 85% bases above Q30	≥ 85% bases above Q30
Quality Scores - 2 × 75 to	≥ 80% bases above Q30	≥ 80% bases above Q30
Quality Scores - 2 × 150 bp	≥ 75% bases above Q30	≥ 75% bases above Q30
Daily Throughput	> 200 Gb	> 400 Gb
Run Time	< 1–3.5 days	
Human Genomes per Run*	up to 6	
Exomes per Run [†]	up to 48	how how
Transcriptomes per Run [‡]	up to 50	

http://www.illumina.com/systems/hiseq-3000-4000/specifications.html

Sequencing Depth

- The first and most basic question is how many base pairs of sequence data will I get Factors to consider are:
 - 1. Number of reads being sequenced
 - 2. Read length (if paired consider then as individuals)
 - 3. Number of samples being sequenced
 - 4. Expected percentage of usable data

 $bpPerSample = rac{readLength * readCount}{sampleCount} * 0.8$

• The number of reads and read length data are best obtained from the manufacturer's website (search for specifications) and always use the lower end of the estimate.

Genomic Coverage

Once you have the number of base pairs per sample you can then determine expected coverage

Factors to consider then are:

- 1. Length of the genome
- 2. Any extra-genomic sequence (ie mitochondria, virus, plasmids, etc.). For bacteria in particular, these can become a significant percentage

ExpectedCoverage	<u>(readLength * numReads) * 0.8</u> * num.lanes numSamples
sample	TotalGenomicContent

Metagenomics Sequencing

Considerations (when a literature search turns up nothing)

- Proportion that is host (non-microbial genomic content)
- Proportion that is microbial (genomic content of interest)
- Number of species
- Genome size of each species
- Relative abundance of each species

The back of the envelope calculation

numReads	Coverage * (AverageGenomeSize)				
	$\overline{ReadLen * DilutionFactor * (1 - hostProportion)}$	* 0.8			

Sequencing Depth – Counting based experiments

- Coverage is determined differently for "Counting" based experiments (RNAseq, amplicons, etc.) where an expected number of reads per sample is typically more suitable.
- The first and most basic question is how many reads per sample will I get Factors to consider are (per lane):
 - 1. Number of reads being sequenced
 - 2. Number of samples being sequenced
 - 3. Expected percentage of usable data
 - 4. Number of lanes being sequenced

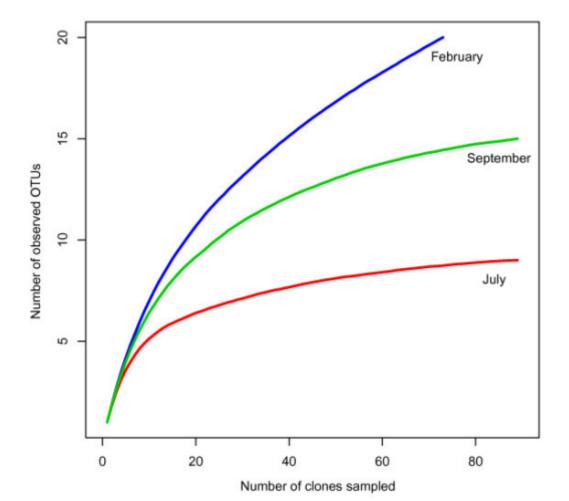
 $\frac{reads}{sample} = \frac{reads.sequenced * 0.8}{samples.pooled} * num.lanes$

• Read length, or SE vs PE, does not factor into sequencing depth.

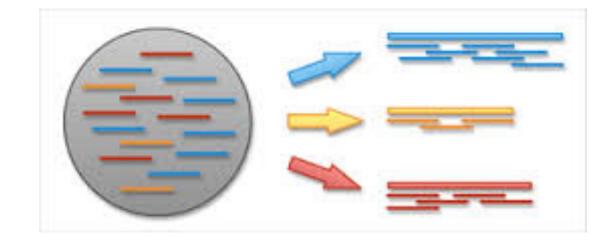
Amplicon Sequencing (Communities, genotyping)

Considerations

- Number of reads being sequenced
- Proportion that is diversity sample (e.g. PhiX)
- Number of samples being pooled in the run


The back of the envelope calculation

 $\frac{reads}{sample} = \frac{reads_sequenced * (1 - diversity_sample)}{num_samples}$ $\frac{102,000}{sample} = \frac{18e6 * (1 - 0.15)}{150}$ Recommendations


- Illumina 'recommends' 100K per sample
- I've used 30K per sample historically, others are fine with 3K per sample
- Really should have as many reads as your experiment needs

How Much? Community Rarefaction curves

- 'Deep' sequence a number of test samples amplicons: ~ 1M+ reads. metagenomics: 1 full HiSeq lane
- Plot rarefactions curves of organism identification, to determine if saturation is achieved

Metagenomics assembly

To determine if you've sequenced 'enough' to re-assemble 'most' of the community member's genetic content, look to what is left over - proportionally

Amplicons vs. Metagenomics

Metagenomics

- Shotgun libraries intended to sequence random genomic sequences from the entire bacterial community.
- Can be costly per sample (\$500 to multi thousands per sample)
- Better resolution and sensitivity to characterize the sample
- Due to cost, can only do relatively few samples
- Amplicon community profiling
 - Sequence only one regions of one gene (e.g. 16s, ITS, LSU)
 - Cheap per sample (at scale, down to \$20/sample)
 - Due to cost, can do many hundreds of samples make more global inferences

Community Sequencing Designs

- Taxonomic Identification
 - Amplicon based (e.g. 16s variable regions)
 - Shotgun Metagenomics
- Functional Characterization
 - Shotgun Metagenomics
 - Shotgun Metatranscriptomics (active)
- Genome Assembly, Function and Variation
 - Shotgun Metagenomics
 - Shotgun Metatranscriptomics

Cost Estimation

- DNA/RNA extraction and QA/QC (Bioanalyzer/Gels)
- Metatranscriptomes: Enrichment of RNA of interest and RNA library preparation
 - Library QA/QC (Bioanalyzer and Qubit)
 - Pooling
- Metagenomes: DNA library preparation
 - Library QA/QC (Bioanalyzer and Qubit)
 - Pooling
- Community Profiling: PCR reactions
 - Library QA/QC (Bioanalyzer and Qubit/microplate reader)
 - Pooling
 - Sequencing (Number of Lanes / runs)
- Bioinformatics (General rule is to estimate the same amount as data generation, i.e. double your budget)

http://dnatech.genomecenter.ucdavis.edu/prices/

Bioinformatics Costs

Bioinformatics includes:

- 1. Storage of data
- 2. Access and use of computational resources and software
- 3. System Administration time
- 4. Bioinformatics Data Analysis time
- 5. Back and forth consultation/analysis to extract biological meaning

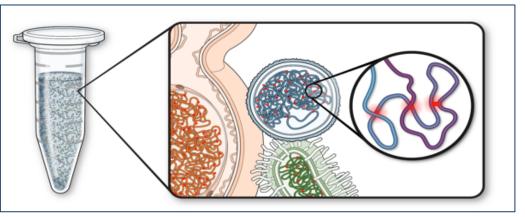
Rule of thumb:

Bioinformatics can and should cost as much (sometimes more) as the cost of data generation.

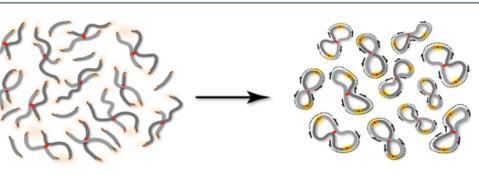
Cost Estimation

- Amplicons
 - 384 Samples
 - Amplicon generation (\$20/sample)= \$7,680
 - Sequencing PE300, target 30K reads per sample
 - Bioinformatics
- Metagenome
 - 12 samples (DNA) = \$400/sample
 - Expectations: Host Proportion 40%, use average genome size of eColi, Target the 1% and coverage of 20
 - Sequencing PE150
 - Bioinformatics

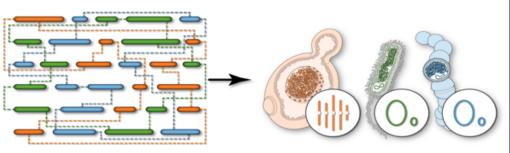
Take Homes


- Experience and/or literature searches (other peoples experiences) will provide the best justification for estimates on needed depth.
- 'Longer' reads are better than short reads.
- Paired-end reads are more useful than single-end reads
- Libraries can be sequenced again, so do a pilot, perform a preliminary analysis, then sequence more accordingly.

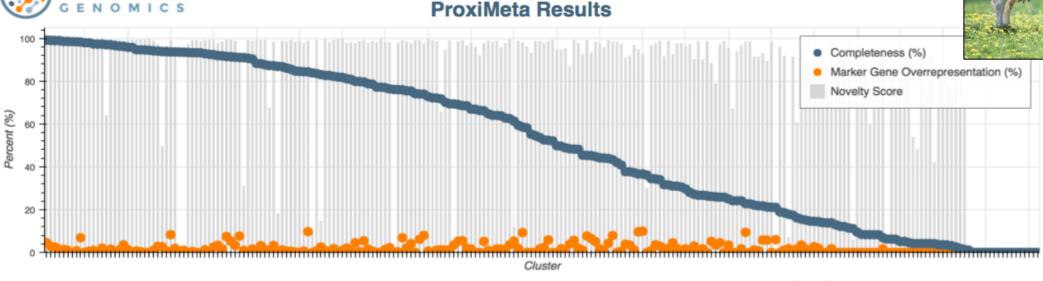
Proximity-Ligation chemically links DNA inside the same cells


Connects metagenome sequences

Proximity-Guided Metagenome Assembly (ProxiMeta™)


Crosslink intact cells to capture intracellular interactions

Isolate and sequence crosslinked junctions



Use proximity connections to deconvolute metagenome

High numbers of high-quality, novel genomes directly from rumen samples

Novel Genome >90% Complete, <10% MGO* >90 Novelty Score

SE

Δ

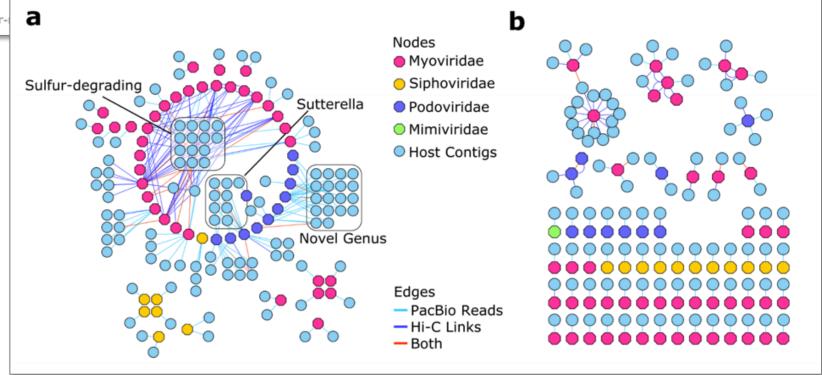
Known Genome
>90% Complete, <10% MGO*
<90 Novelty Score</pre>

Mixed Genome >90% Complete, >10% MGO* Any Novelty Score

*Marker Gene Overrepresentation

Cluster ID	Top Reference	Completeness (%)	Marker Gene Overrepresentation (%)	Novelty Score	Abundance (%)	GC (%)	Genome Size	Num Contigs	Contig N50
cluster.18	pActinobacteria	99.19	4.57	98.80	1.21	60.76	2,936,416	212	24,991
cluster.13	kBacteria	99.05	2.89	99.19	0.75	47.73	2,282,531	302	11,128
cluster.11	gPrevotella	98.96	2.53	99.19	0.39	46.49	3,600,663	209	28,380
cluster.5	oClostridiales	98.94	1.42	98.79	0.19	52.13	2,626,012	184	25,621

Stewart et al., Nature Comms, 2018


Connecting viruses with their hosts in rumen

Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation

Derek Bickhart, Mick Watson, Sergey Koren, Kevin Panke-Buisse, Laura M Cersosimo, Maximillian O Press, Curtis P Van Tassell, Jo Ann S Van Kessel, Bradd J Haley, Seon Woo Kim, Cheryl Heiner, Garret Suen, Kiranmayee Bakshy, Ivan Liachko, Shawn T Sullivan, Jay Ghurye, Mihai Pop, Paul J Weimer, Adam M Phillippy, Timothy P.L. Smith

doi: https://doi.org/10.1101/491175

This article is a preprint and has not been peer-

Bickhart et al., BioRxiv, De