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Goal: A culture independent method for profiling the diversity of a
community.

High-throughput sequencing technologies (such as lllumina) can sequence
millions of amplicons, across thousands of samples in a single run, and
are today our best approach to deeply assess the environmental or
clinical diversity of complex microbial assemblages of archaea, bacteria,
and eukaryotes.

Using sequence variation within a common gene (e.g. 16s) to assign and
count community members rather than counting individual cells. Assume
each sequence variant is one community member.



Treating Bioinformatics as a Data Science

Seven stages to data science
Define the question of interest
Get the data

Clean the data

Explore the data
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Fit statistical models

Communicate the results

N o U kA e

Make your analysis reproducible




Designing Experiments

Beginning with the question of interest ( and work backwards )

* The final step of an analysis is the application of statistical models.

Traditional statistical considerations and basic principals of statistical design of
experiments apply.

* Control for effects of outside variables, avoid/consider possible biases, avoid
confounding variables in sample preparation.

 Randomization of samples, plots, etc.
* Replication is essential (triplicates are THE minimum)

* You should know your final statistical model and comparisons before
beginning your experiment.
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General rules for preparing an experiment and samples

* Prepare more samples then you are going to need, i.e. expect some will be of
poor quality, or fail

* Preparation stages should occur across all samples at the same time (or as
close as possible) and by the same person

* Spend time practicing a new technique to produce the highest quality product
you can, reliably

e Quality should be established using Fragment analysis traces (pseudo-gel
images, RNA RIN > 7.0)

 DNA/RNA should not be degraded

» 260/280 ratios for RNA should be approximately 2.0 and 260/230 should be between 2.0
and 2.2. Values over 1.8 are acceptable

e Quantity should be determined with a Fluorometer, such as a Qubit.
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Sample preparation

In high throughput biological work (Microarrays, Sequencing,
HT Genotyping, etc.), what may seem like small technical
details introduced during sample extraction/preparation can
lead to large changes, or technical bias, in the data.

Not to say this doesn’t occur with smaller scale analysis such

as Sanger sequencing or qRT-PCR, but they do become more

apparent (seen on a global scale) and may cause significant
iIssues during analysis.
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Be Consistent

BE CONSISTENT ACROSS ALL SAMPLES!!!
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https://www.illumina.com/systems/sequencing-platforms/miseq/specifications.html

Hlumina MISEQ SEQUENCING

Read Length 1 x 36 bp

Total Time* ~4 hrs

Output 540-610 Mb
Read Length 2 x 150 bp
Total Time* ~19 hrs
Output 1.2Gb

MiSeq Reagent Kit v2

2 x 25 bp 2 x 150
~5.5 hrs ~24 hrs
750-850 Mb 4.5-51

MiSeq Reagent Kit v2 Micro

MiSeq Reagent Kit v3

bp 2 x 250 bp 2 x 75 bp 2 x 300 bp
~39 hrs ~21 hrs ~56 hrs
Gb 7.5-8.5 Gb 3.3-3.8Gb 13.2-15 Gb
MiSeq Reagent Kit v2 Nano
2 x 250 bp 2 x 150 bp
~28 hrs ~17 hrs
500 Mb 300 Mb

* Total time includes cluster generation, sequencing, and base calling on a MiSeq System enabled with dual-surface scanning.

MiSeq Reagent Kit v2

Single Reads 12-15 million

Paired-End Reads 24-30 million

MiSeq Reagent Kit v3
22-25 million

44-50 million

MiSeq Reagent Kit v2 Micro MiSeq Reagent Kit v2 Nano

4 million 1 million

o

8 million 2 million

** Install specifications based on lllumina PhiX control library at supported cluster densities (865-965 k/mm? clusters passing filter for v2 chemistry and 1200-1400 k/mm? clusters passing filter for v3 chemistry).
Actual performance parameters may vary based on sample type, sample quality, and clusters passing filter.

MiSeq Reagent Kit v2
> 90% bases higher than Q30 at 1 x 36 bp
> 90% bases higher than Q30 at 2 x 25 bp
> 80% bases higher than Q30 at 2 x 150 bp

> 75% bases higher than Q30 at 2 x 250 bp

MiSeq Reagent Kit v3
> 85% bases higher than Q30 at 2 x 75 bp

> 70% bases higher than Q30 at 2 x 300 bp

1 A quality score (Q-score) is a prediction of the probability of an error in base calling. The percentage of bases > Q30 is averaged across the entire run.



https://www.illumina.com/systems/sequencing-platforms/miseq/specifications.html

llumina HiSeq sequencing COStS  1usessom fragments per ane

http://www.illumina.com/systems/hiseg-3000-4000/specifications.html

-
U HiSeq 3000 System HiSeq 4000 System
® ==
e No. of Flow Cells per Run 1 1or2 h
E Data Yield - 2 x 150 bp 650-750 Gb 1300-1500 Gb
Data Yield - 2 x 75 bp 325-375 Gb 650-750 Gb
h q
o Data Yield - 1 x 50 bp 105-125 Gb 210-250 Gb
c Clusters Passing Filter (8 lanes per flow cell) q up to 2.5B single reads or 5B paired end reads up to 5B single reads or 10B PE reads
® mmm Quality Scores - 2 x 50 > 85% bases above Q30 > 85% bases above Q30
© mmm Quality Scores - 2 x 75 = 80% bases above Q30 > 80% bases above Q30
m Quality Scores - 2 x 150 bp > 75% bases above Q30 = 75% bases above Q30
m Daily Throughput > 200 Gb > 400 Gb
[ Run Time < 1-3.5 days
> Human Genomes per Run* upto 6
< Exomes per Run' up to 48
n Transcriptomes per Run? up to 50



http://www.illumina.com/systems/hiseq-3000-4000/specifications.html

Sequencing Depth

* The first and most basic question is how many base pairs of sequence data
will | get
Factors to consider are:

1. Number of reads being sequenced

2. Read length (if paired consider then as individuals)

3. Number of samples being sequenced

4. Expected percentage of usable data

readLength x readCount .

0.8
sampleCount

bpPerSample =

* The number of reads and read length data are best obtained from the
manufacturer’s website (search for specifications) and always use the
lower end of the estimate.
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Genomic Coverage

Once you have the number of base pairs per sample you can then determine
expected coverage

Factors to consider then are:
1. Length of the genome
2. Any extra-genomic sequence (ie mitochondria, virus, plasmids, etc.). For
bacteria in particular, these can become a significant percentage

(readLength * numReads) * 0.8
ExpectedCoverage numSamples

sample TotalGenomicContent

* num.lanes
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Metagenomics Sequencing

Considerations (when a literature search turns up nothing)
* Proportion that is host (non-microbial genomic content)

Proportion that is microbial (genomic content of interest)

Number of species

Genome size of each species

Relative abundance of each species

The back of the envelope calculation

numReads Coverage * (AverageGenomeSize) 1

sample  ReadLen * DilutionFactor * (1 — hostProportion) 0.8
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Sequencing Depth — Counting based experiments

e Coverage is determined differently for "Counting” based experiments
(RNAseq, amplicons, etc.) where an expected number of reads per sample is
typically more suitable.

* The first and most basic question is how many reads per sample will | get
Factors to consider are (per lane):
1. Number of reads being sequenced
2. Number of samples being sequenced
3. Expected percentage of usable data
4. Number of lanes being sequenced

reads reads.sequenced 0.8
= num.lanes
sample samples.pooled

* Read length, or SE vs PE, does not factor into sequencing depth.
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Amplicon Sequencing (Communities, genotyping)

Considerations

* Number of reads being sequenced

* Proportion that is diversity sample (e.g. PhiX)
* Number of samples being pooled in the run

The back of the envelope calculation

reads  reads_sequenced * (1 —diversity_sample)

sample num_samples

example
102,000 18e6 * (1 —0.15)
sample 150

Recommendations
* [llumina ‘recommends’ 100K per sample

* [|'ve used 30K per sample historically, others are fine with 3K per sample
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e Really should have as many reads as your experiment needs



How Much? Community Rarefaction curves

20
1

February

* 'Deep’ sequence a number of test samples
amplicons: ~ 1M+ reads.
metagenomics: 1 full HiSeq lane 5

September

* Plot rarefactions curves of organism
identification, to determine if saturation is
achieved

Number of observed OTUs
10
1

T T T T T
0 20 40 60 80

Number of clones sampled
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Metagenomics assembly

To determine if you’ve sequenced ‘enough’ to re-assemble
‘most’ of the community member’s genetic content, look to
what is left over - proportionally
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Amplicons vs. Metagenomics

* Metagenomics

* Shotgun libraries intended to sequence random genomic sequences from the
entire bacterial community.

* Can be costly per sample (S500 to multi thousands per sample)
* Better resolution and sensitivity to characterize the sample
e Due to cost, can only do relatively few samples

 Amplicon community profiling
* Sequence only one regions of one gene (e.g. 16s, ITS, LSU)
* Cheap per sample (at scale, down to $S20/sample)
* Due to cost, can do many hundreds of samples make more global inferences
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Community Sequencing Designs

e Taxonomic ldentification
 Amplicon based (e.g. 16s variable regions)
e Shotgun Metagenomics

* Functional Characterization
e Shotgun Metagenomics
* Shotgun Metatranscriptomics (active)

 Genome Assembly, Function and Variation
* Shotgun Metagenomics
* Shotgun Metatranscriptomics
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Cost Estimation

 DNA/RNA extraction and QA/QC (Bioanalyzer/Gels)

* Metatranscriptomes: Enrichment of RNA of interest and RNA library preparation
» Library QA/QC (Bioanalyzer and Qubit)
* Pooling
* Metagenomes: DNA library preparation
» Library QA/QC (Bioanalyzer and Qubit)
* Pooling

 Community Profiling: PCR reactions
» Library QA/QC (Bioanalyzer and Qubit/microplate reader)
* Pooling

* Sequencing (Number of Lanes / runs)

* Bioinformatics (General rule is to estimate the same amount as data generation, i.e. double
your budget)

http://dnatech.genomecenter.ucdavis.edu/prices/
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http://dnatech.genomecenter.ucdavis.edu/prices/

Bioinformatics Costs

Bioinformatics includes:

1.Storage of data

2.Access and use of computational resources and software
3.System Administration time

4.Bioinformatics Data Analysis time

5.Back and forth consultation/analysis to extract biological meaning

Rule of thumb:
Bioinformatics can and should cost as much (sometimes more) as the
cost of data generation.
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Cost Estimation

* Amplicons
* 384 Samples
* Amplicon generation ($20/sample)= 57,680
* Sequencing PE300, target 30K reads per sample
* Bioinformatics

* Metagenome
e 12 samples (DNA) = $S400/sample

* Expectations: Host Proportion 40%, use average genome size of eColi,
Target the 1% and coverage of 20

* Sequencing PE150
* Bioinformatics
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Take Homes

* Experience and/or literature searches (other peoples experiences) will
provide the best justification for estimates on needed depth.

* ‘Longer’ reads are better than short reads.
* Paired-end reads are more useful than single-end reads

* Libraries can be sequenced again, so do a pilot, perform a preliminary
analysis, then sequence more accordingly.
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Proximity-Ligation chemically
— links DNA inside the same cells

Connects metagenome
sequences




Proximity-Guided Metagenome

Assembly (ProxiMeta™)

Crosslink intact cells to capture intra-
cellular interactions

Isolate and sequence crosslinked
junctions

Use proximity connections to |:
deconvolute metagenome | &<
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¥ Hich f high li | irectl
-l High numbers of high-quality, novel genomes directly
@®J from rumen samples
¥l S PHASE |
.U N2/ ceEnomics ProxiMeta Results
_——
e 100
U ® Completeness (%) -
1 | ® Marker Gene Ovenepresentatlon (%)
E % Noveity Score
L 2 o
O
.
©® .
O ]
S bt . v . < - ‘ 2 . ‘ . - . 4 - - . - . “
m ’ Cluster
Novel Genome Known Genome Mixed Genome
“:)" Complete, <109% MG O Complete, <10% MGO* o( on ml te, >109% MGO*
wvelty Score <90 Novelty Score «HN Score
Marker Gene Overrepresentation
(%)
cluster.18 p__Actinobacteria 99.19 98.80 60.76 2,936,416 24,991
cluster.13 k__Bacteria 99.05 2.89 99.19 0.75 47.73 2,282,531 302 11,128
cluster.11 g__Prevotella 98.96 2.53 99.19 0.39 46.49 3,600,663 209 28,380
cluster.5 o__Clostridiales 98.94 1.42 98.79 0.19 52.13 2,626,012 184 25,621 era

Stewart et al., Nature Comms, 2018
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Connecting viruses with their hosts in rumen

Assignment of virus and antimicrobial resistance genes to microbial hosts in a
complex microbial community by combined long-read assembly and proximity

ligation

Derek Bickhart, Mick Watson, Sergey Koren, Kevin Panke-Buisse, Laura M Cersosimo, Maximillian O Press,
Curtis P Van Tassell, Jo Ann S Van Kessel, Bradd | Haley, Seon Woo Kim, Cheryl Heiner, Garret Suen,
Kiranmayee Bakshy, lvan Liachko, Shawn T Sullivan, Jay Ghurye, Mihai Pop, Paul | Weimer, Adam M Phillippy,

Timothy P.L. Smith
doi: https://doi.org/10.1101/491175

This article is a preprint and has not been peer-
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Bickhart et al., BioRxiv, De



