

Analyses and Annotation for Family-based Genome-wide Data

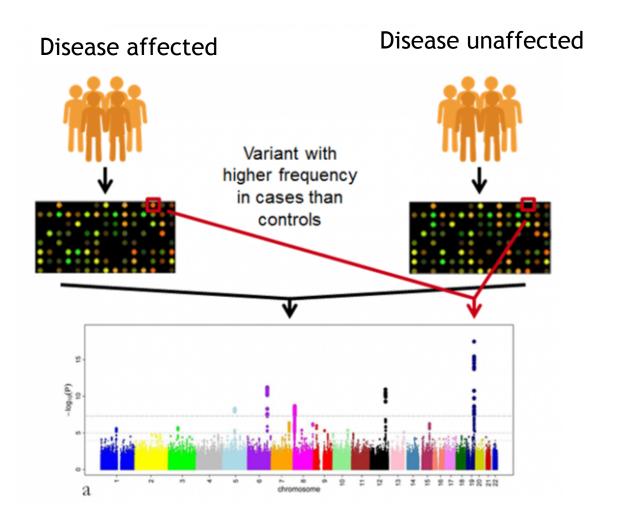
Anthony Musolf, PhD Research Fellow Computational and Statistical Genomics Branch National Human Genome Research Institute/National Institutes of Health

1. Background

- 1. Background
- 2. Gene-based TDT

- 1. Background
- 2. Gene-based TDT
- 3. Extended family linkage analysis

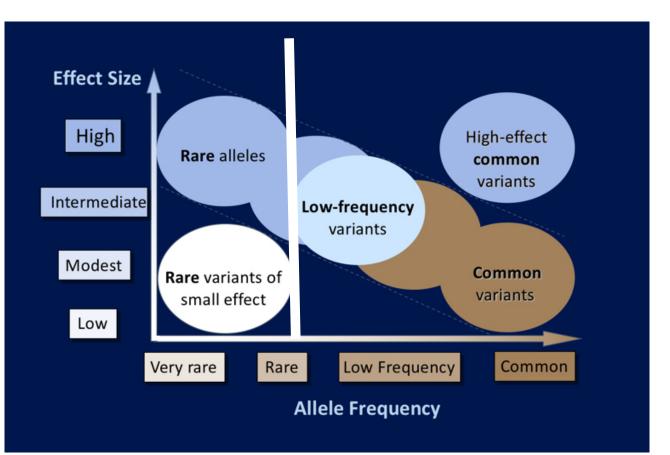
- 1. Background
- 2. Gene-based TDT
- 3. Extended family linkage analysis
- 4. Gene-based association with related individuals



- 1. Background
- 2. Gene-based TDT
- 3. Extended family linkage analysis
- 4. Gene-based association with related individuals
- 5. Annotation of results

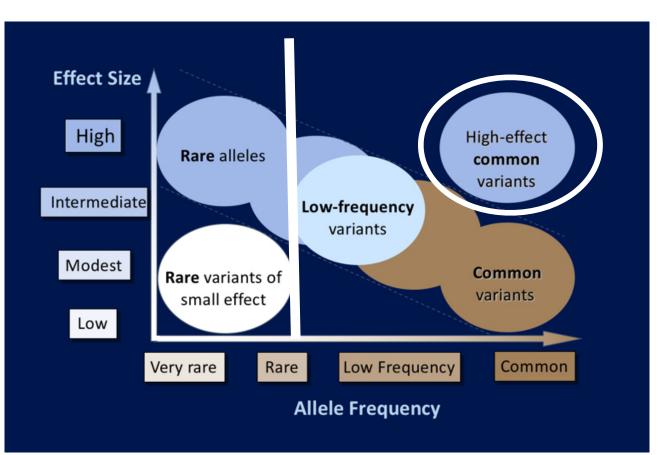
Background – Genetic Analysis

- Analysis of genotypic data assumes you have genotype and phenotypic data on set of subjects
 - Genotype = microarray, exome chip, whole exome sequence, whole genome sequence
 - Phenotype = Binary (affected/ unaffected), quantitative

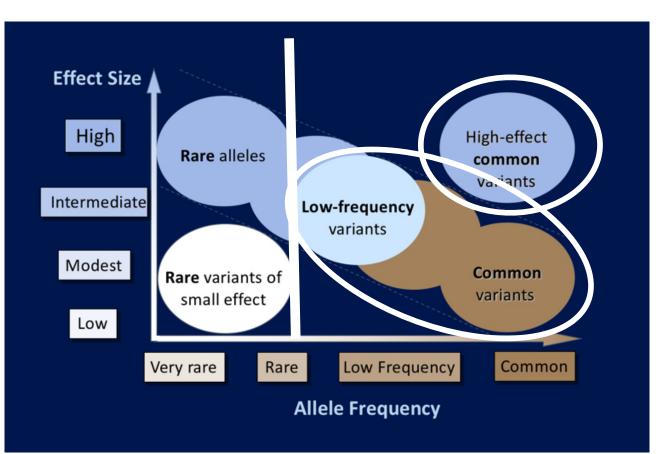


Background – Family Studies

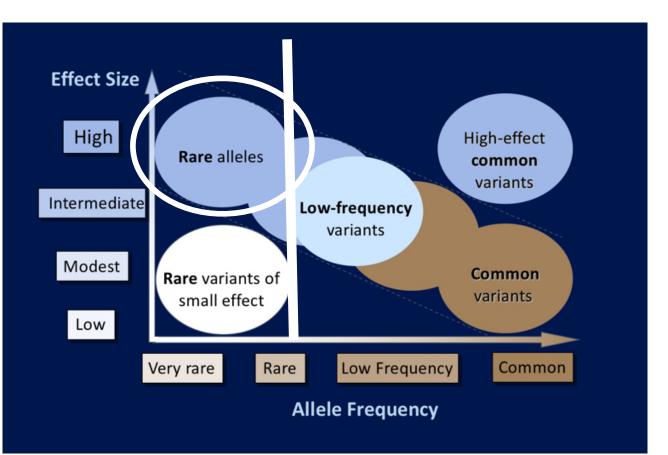
- Most genetic studies are performed with unrelated individuals
 Population-based study
- Some genetic studies are performed with related individuals
 Family-based study
- Different kinds of family data
- Determine which kind of analysis will be performed



- Advantages over population-based studies
 - Aggregated families are often enriched for rare variants that are potentially highly penetrant



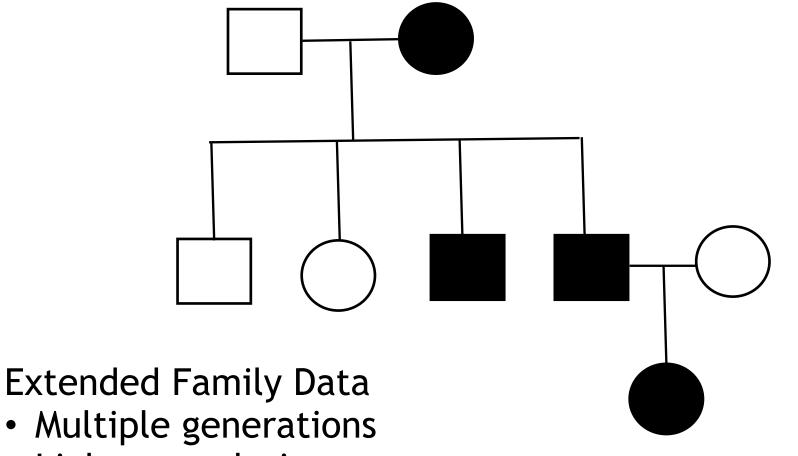
- Advantages over population-based studies
 - Aggregated families are often enriched for rare variants that are potentially highly penetrant



- Advantages over population-based studies
 - Aggregated families are often enriched for rare variants that are potentially highly penetrant

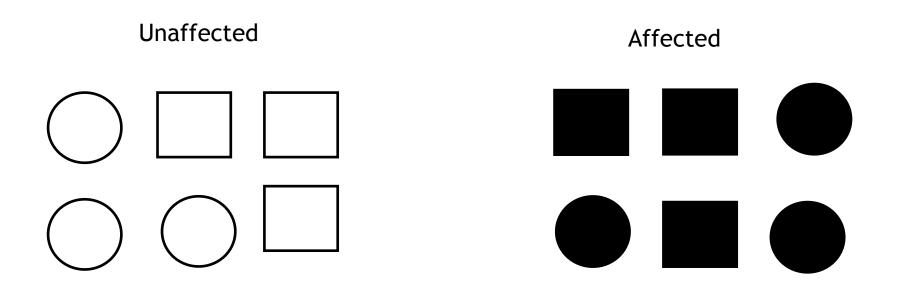


- Advantages over population-based studies
 - Aggregated families are often enriched for rare variants that are potentially highly penetrant

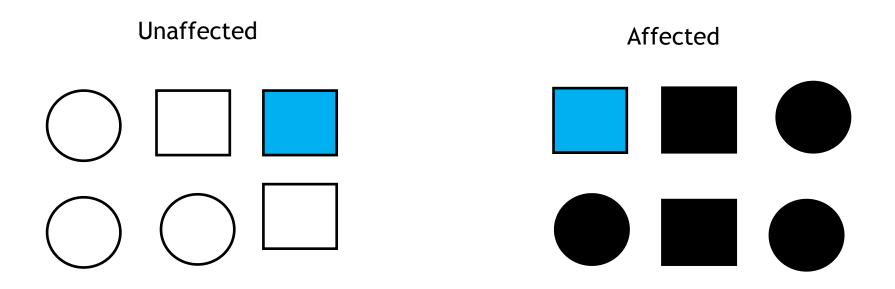


Trio Data

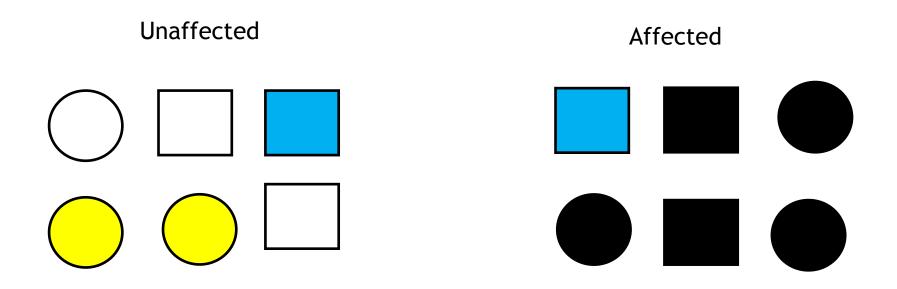
Two genotyped parents, one genotyped affected child

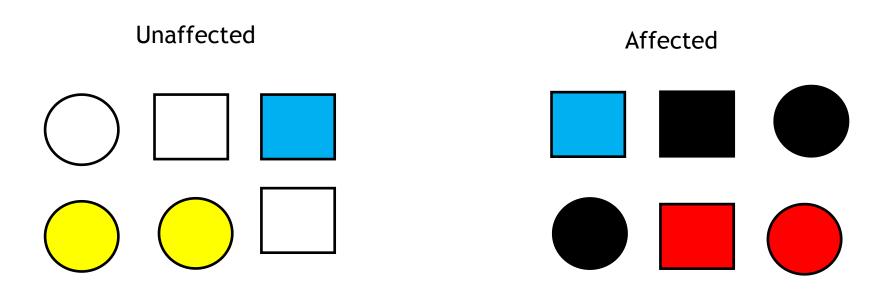


• TDT, Gene-based TDT



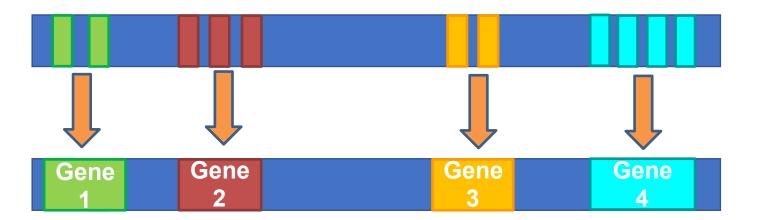
• Linkage analysis





Population-based study with related individuals

- Mix of related unrelated individuals
- Could remove related individuals
- Can use kinship matrix to keep both in


Analysis of Trio Data

- Transmission Disequilibrium Test (TDT)
- Use trio data to find which alleles are transmitted to child from parent at a single varaint
- Finds linkage in the presence of genetic association
- Robust to population stratification

Gene-based TDT

- Gene-based TDT is similar to standard TDT
- Standard TDT looks for transmission at single marker level
- Gene-based does this at gene level
- Particularly useful for rare variants

How do we perform a gene-based TDT?

- Many gene-based tests; not many adapted to TDT
 - rvTDT uses gene-based tests adapted for TDT
 - <u>https://github.com/statgenetics/rv-tdt</u>
- Uses PLINK files
- WARNING rvTDT is not user friendly!

Running rvTDT

- Step 1 rvTDT requires phased data
 - Phase data to determine haplotypes
 - Allows us to know which allele is on with chromosome
 - Identify recombination
 - We can phase PLINK data using a program called SHAPEIT
 - <u>https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html</u>

shapeit --input-bed PLINK.bed PLINK.bim PLINK.fam --seed 123456789 --output-max PLINK.haps PLINK.phased.sample

• Input bed = binary PLINK files

SHAPEIT Output

- SHAPEIT will output two files
- .sample file which contains subject information
 - Family/Individual IDs
 - Parental IDs
 - Sex and phenotype

- Requires three files
 - Genotype file (extension .tped)

• Requires three files

• Requires three files

- Requires three files
 - Genotype file (extension .tped)

• Remove three columns (cut or awk)

- Requires three files

 - Remove three columns (cut or awk)

• Requires three files

• Remove three columns (cut or awk)

• Map file (extension .map) DPY19L1P1 rs541054536 0.002577

Requires three files

• Remove three columns (cut or awk)

- Map file (extension .map) DPY19L1P1 rs541054536 0.002577
- Phenotype file (extension .phen)

182-1 182 0 0 1 0

Running rvTDT with phased data

rvTDT PROJECT-NAME –G INPUT.tped –P INPUT.phen –M INPUT.map –u MAF

- Output will provide two folders
 - PROJECT-NAME_pval
 - PROJECT-NAME_rvTDT
- Pval contains a list of each gene and its pvalues
- Each gene has its own file

P-value Output file

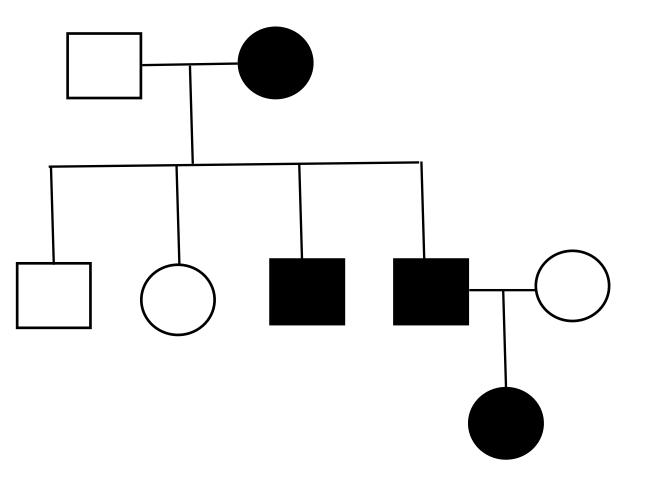
• Output file will contain gene name and p-values for different tests

#gene	CMC- Analytical	BRV-Haplo	CMC-Haplo	VT-BRV- Haplo	VT-CMC- Haplo	WSS-Haplo
RVTDT ru	0.439633	0.642715	0.439122 2.5ts	0.788423	0.40519	0.62475

• Each test varies on how the gene markers are created

Pvalue Output file

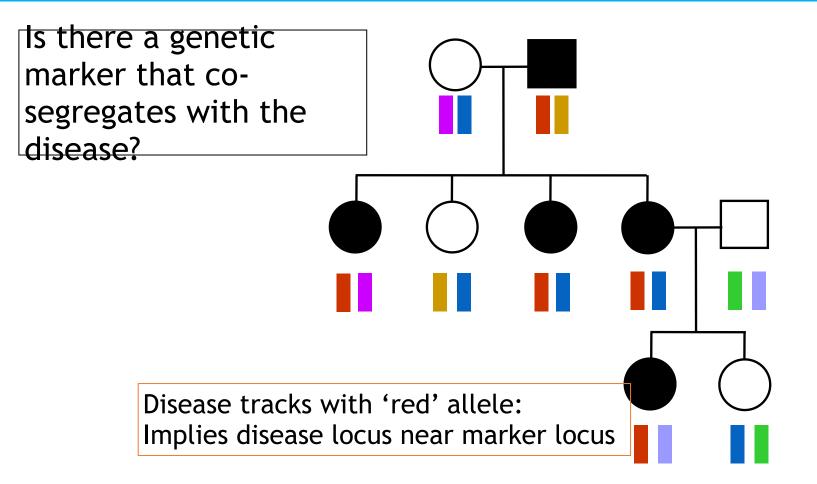
• Output file will contain gene name and pvalues for different tests


	#gene	CMC- Analytical	BRV-Haplo		VT-BRV- Haplo	VT-CMC- Haplo	WSS-Haplo				
	B <u>MPZ</u>	0.439633	0.642715	0.439122	0.788423	0.40519	0.62475				
• r	• rvidi runs six different tests 0.788423 0.40519 0.62475										

- Each test varies on how the gene markers are created
- Personally, I prefer CMC-Haplo

Analysis of Extended Family Data

- Genetic linkage analysis
- Slightly different than association



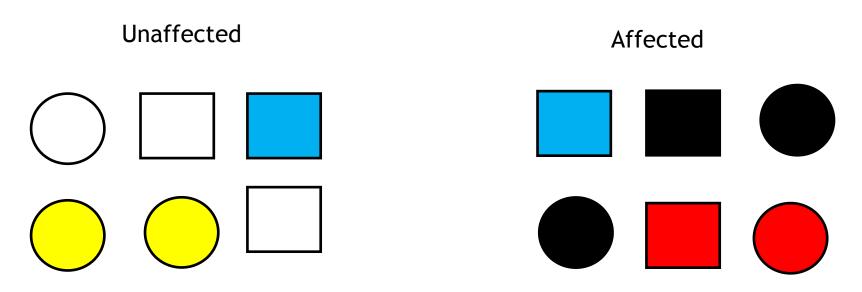
What is Genetic Linkage Analysis

- Type of analysis to locate a gene by seeing which genetic marker segregates with the disease in families
- Tendency of adjacent alleles on the same chromosome to be transmitted together
- Violations of Mendel's Law of Independent Assortment
- Measured in LOD scores for each family
- Cumulative across families
- Add parameter for heterogeneity (HLOD score) across families

An example of genetic linkage

Types of Linkage Analysis

- Two main types of linkage parametric and nonparametric
- Parametric linkage assumes initial parameters such as disease allele frequency, penetrance, and inheritance model (dominant/recessive)
 - Can be two-point (analysis between single variant and phenotype) or multipoint (multiple variants and phenotype)
- Nonparametric linkage has no parameters, calculates linkage based purely on relationship differences between family members (identity by descent)


Software for Linkage Analysis

- Linkage analysis programs will require similar data to PLINK TDT
- File with genotype information
- File with subject information including family information
- Also will require
 - Model file Parametric linkage
 - Frequency file containing MAFs of all variants
- Merlin
 - <u>http://csg.sph.umich.edu/abecasis/merlin/tour/input_files.html</u>
- Morgan

NHGRI

- <u>https://sites.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml</u>
- GENEHUNTER
 - <u>https://bio.tools/GENEHUNTER</u>

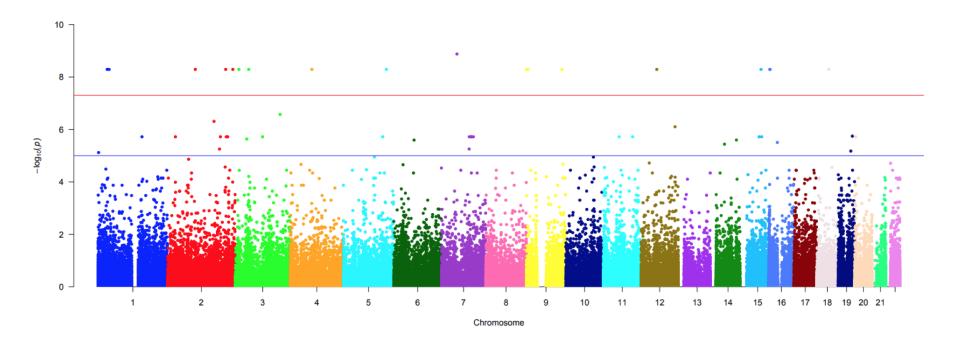
Analysis of Population-based Data with Related Subjects

• How can we perform an association analysis with related individuals?

- EMMAX is an association analysis program that can handle related data
- Does so by use of a kinship matrix
 - Determines how related each person is to every other person
 - Similar to IBD
- EMMAX requires a VCF file to run, along with a phenotype file

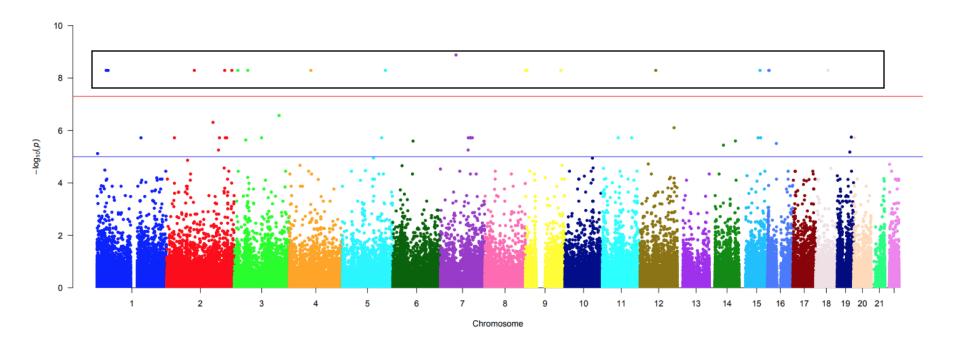
EPACTS

- EMMAX can be run through the EPACTS software
 - <u>https://genome.sph.umich.edu/wiki/EPACTS</u>
- EPACTS can make kinship matrix via the command
 - epacts make-kin --vcf INPUT.vcf --ped INPUT.ped --out KIN.kinf
- Once kinship matrix is made, can run association analysis with:
 - epacts single --vcf INPUT.vcf --ped INPUT.ped --kinf KIN.kinf --pheno PHEN --out OUTPUT
- Works with binary/quantitative phenotypes
- Also can be run as a gene-based test

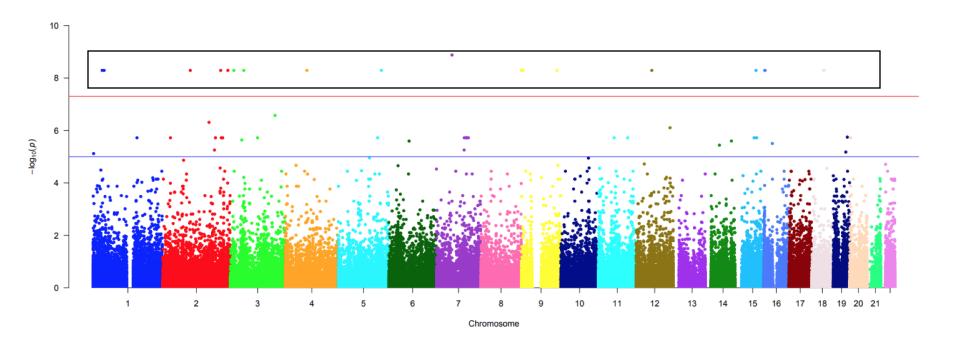

EPACTS Output

• EPACTS output will contain a variety of metrics including p-value

#CHROM	BEG	END	MARKER_I	NS	AC	CALLRATE	GENOCNT	MAF	STAT	PVALUE	BETA	SEBETA	R2
#CHRUM	DEG	LIND	U	Cri	AC	CALLRAIE	GENOCIVI		STAT	PVALUE	DETA	SEDETA	κz
			10:105765										
			430_A/										
			G_10:1057										
10	1.06E+08	1.06E+08	65430	1740	3475	1	0/5/1735	0.00144	4.705	2.74E-06	5.429	1.154	0.01259
			10:113935										
			379_A/										
			G_10:1139				274/821/6						
10	1.14E+08	1.14E+08	35379	1740	2111	1	45	0.39339	4.6773	3.13E-06	0.4298	0.09188	0.01245


What do I do once my analysis is completed?

• After running analysis, how do I interpret my results?


What do I do once my analysis is completed?

• After running analysis, how do I interpret my results?

What do I do once my analysis is completed?

- After running analysis, how do I interpret my results?
- Annotation!

Annotation

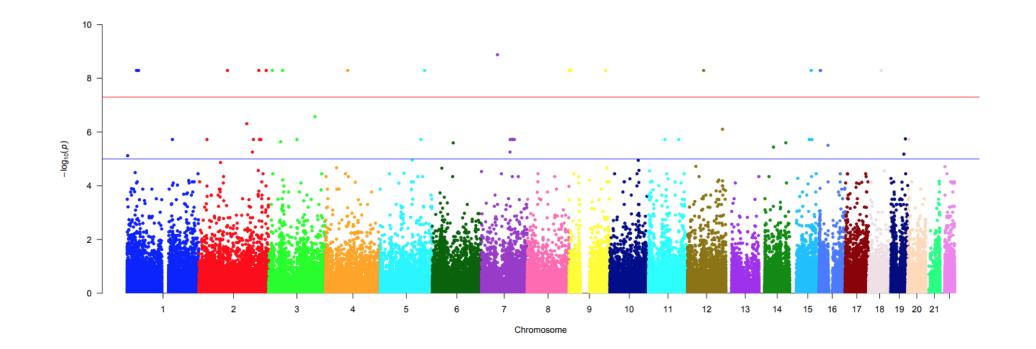
- Annotation allows us to differentiate aspects of variants to determine which variants are the best candidates moving forward
 - Gene location
 - Exonic/intronic/intergenic
 - Minor allele frequency
 - Protein pathogenicity prediction
- Many different annotation programs exist
- wANNOVAR
 - <u>https://wannovar.wglab.org/</u>

wANNOVAR

- Web-based database
- Collates data from different sources to give extensive annotation on variants
- Takes simple input of:
 - Chromosome
 - Basepair position start
 - Basepair position stop
 - Major allele
 - Minor allele

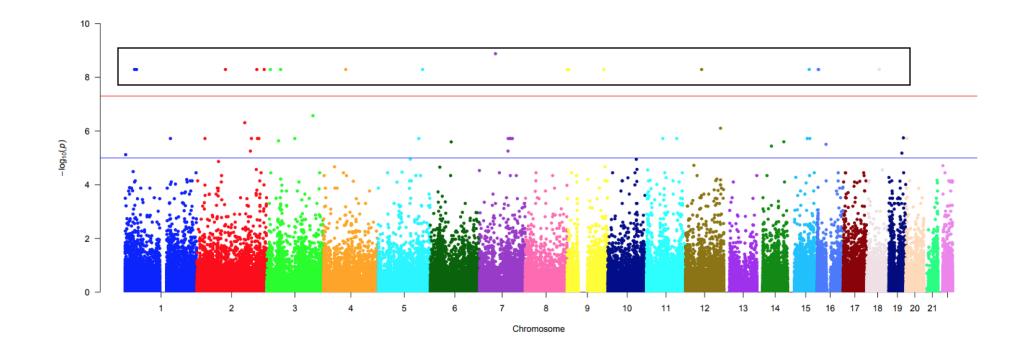
wANNOVAR Output

- wANNOVAR will email you a link with your output file
- Will be a very large excel file with a lot of information
 - Gene/exonic functions
 - Amino acid change
 - Allele frequency information from 1000Genomes, gnomAD
 - dbSNP info
 - Protein prediction info from SIFT, PolyPhen2, CADD and others



Annotation on Noncoding Data

- Databases like wANNOVAR give much information for coding variants including protein prediction
- However, do not offer much for noncoding variants, except to say they're noncoding!



Prioritization between noncoding variant

Prioritization between noncoding variant

Noncoding Annotation Databases

- Not a lot of databases for noncoding variants
- RegulomeDB
 - <u>https://regulomedb.org/regulome-search/</u>
 - Database for transcription factor binding sites (TFBS)
 - Search by BP position or rsID
 - Returns a score (%) of how likely a variant is to be in a TFBS

Noncoding Annotation Databases

• SPANR

- http://tools.genes.toronto.edu/
- Database for determining whether noncoding variant is a splice site
- Input file requires chromosome, position, ID, major allele, minor allele
- Output will tell you whether variant is in known splice site

Conclusions

- What did we learn?
 - Analysis techniques for:
 - Gene-based TDT
 - Genetic Linkage Analysis for Extended Families
 - Association Analysis with a mix of related and unrelated individuals
 - Annotation techniques with:
 - wANNOVAR
 - Provides large amounts of annotation information
 - Very useful for coding variants
 - RegulomeDB
 - Transcription factor binding sites
 - SPANR
 - Splice sites

Comments/Questions

- Feel free to email me any questions at:
 - musolfam@mail.nih.gov

