☰ Menu

      Proteomics Analysis with Limma

Home
Setup
Analysis in limma
BONUS-Enrichment analysis

KEGG enrichment of differential protein expression results

# install.packages("BiocManager")
# BiocManager::install("clusterProfiler")
# BiocManager::install("org.Hs.eg.db")
# BiocManager::install("kableExtra")
library(clusterProfiler)
## 
## clusterProfiler v4.16.0 Learn more at https://yulab-smu.top/contribution-knowledge-mining/
## 
## Please cite:
## 
## S Xu, E Hu, Y Cai, Z Xie, X Luo, L Zhan, W Tang, Q Wang, B Liu, R Wang,
## W Xie, T Wu, L Xie, G Yu. Using clusterProfiler to characterize
## multiomics data. Nature Protocols. 2024, 19(11):3292-3320
## 
## Attaching package: 'clusterProfiler'
## The following object is masked from 'package:stats':
## 
##     filter
library(kableExtra)

We will look for KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways that are significantly enriched in our differential expression results, using the Bioconductor package clusterProfiler [1]. This pathway enrichment package implements a variation of the algorithm of Subramanian et al. developed for GSEA [2,3].

  1. T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021, 2(3):100141

  2. Subramanian, Aravind, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich et al. “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.” Proceedings of the National Academy of Sciences 102, no. 43 (2005): 15545-15550.

  3. G. Korotkevich, V. Sukhov, A. Sergushichev. Fast gene set enrichment analysis. bioRxiv (2019), doi:10.1101/060012

Setting up input gene list

As input to the enrichment analysis, we will use the t statistics (log fold changes divided by their standard errors) from the differential expression analysis.

Read in DE results

DE.results <- read.delim("DE_results.txt")

Create vector of t statistics, where the names are uniprot IDs

geneList <- DE.results$t
names(geneList) <- DE.results$Protein.Group
geneList <- sort(geneList, decreasing = TRUE)

Run enrichment analysis

gse <- gseKEGG(gene = geneList, organism = "hsa", keyType = "uniprot", seed = TRUE)
## Reading KEGG annotation online: "https://rest.kegg.jp/link/hsa/pathway"...
## Reading KEGG annotation online: "https://rest.kegg.jp/list/pathway/hsa"...
## Reading KEGG annotation online: "https://rest.kegg.jp/conv/uniprot/hsa"...
## using 'fgsea' for GSEA analysis, please cite Korotkevich et al (2019).
## preparing geneSet collections...
## GSEA analysis...
## leading edge analysis...
## done...
tab <- as.data.frame(gse)
kable(head(tab, 25), row.names = FALSE) %>% kable_styling() %>% scroll_box(width = "800px")
ID Description setSize enrichmentScore NES pvalue p.adjust qvalue rank leading_edge core_enrichment
hsa04662 B cell receptor signaling pathway 66 0.6480356 2.747188 0e+00 0.0e+00 0.0e+00 1651 tags=68%, list=23%, signal=53% Q8NDB2/Q07889/P48454/P04049/Q08209/Q04206/P07948/P63098/P15498/P16298/P60033/Q92835/P19838/Q9UN19/Q13469/P01111/Q02750/P05412/P16885/O95644/P29350/P27986/P28482/P43405/P36507/P20023/Q6ZUJ8/O15111/Q15653/O00459/P31751/Q9Y6K9/P42336/Q9BXL7/P20273/P15391/O00329/P11912/P01116/P62993/P49841/Q12968/P15153/Q9UKW4/Q07890
hsa04015 Rap1 signaling pathway 84 0.5831962 2.590209 0e+00 0.0e+00 0.0e+00 1644 tags=58%, list=23%, signal=45% Q7LDG7/Q96FS4/Q9BZL6/Q7Z5R6/O43166/P07737/O60292/P04049/Q13905/Q8TEU7/P15498/P11234/P01111/Q02750/P11215/P08514/P04899/P60709/P05106/Q00722/P27986/P46734/P61224/P28482/Q9Y490/P07996/P36507/O00459/Q8WWW0/P31751/P10301/P42336/O94806/O43561/P09471/Q9Y4G6/O00329/P05107/P52564/P01116/P08754/O15117/P19174/P46109/P15056/P15153/O00522/Q9H1C0/Q9UKW4
hsa04062 Chemokine signaling pathway 95 0.5561499 2.519823 0e+00 0.0e+00 0.0e+00 1660 tags=60%, list=24%, signal=46% P25098/Q7LDG7/Q07889/P04049/Q04206/P07948/P15498/P42768/P19838/P40763/P01111/P59768/Q02750/P17612/P04899/P50151/Q05655/P08631/O75116/P16885/Q14289/Q00722/P27986/P49840/P43250/Q8TCU6/P61224/P28482/O15111/Q15653/O00459/P31751/P02776/Q9Y6K9/Q05397/P42336/P32121/P62879/P32302/P49682/P02775/P48736/O00329/P01116/P08754/P62993/P19174/P49841/P46109/P15056/P35626/P15153/O60674/Q9UKW4/Q07890/P16520/Q92556
hsa05131 Shigellosis 156 0.4852451 2.405254 0e+00 0.0e+00 0.0e+00 1871 tags=51%, list=27%, signal=39% Q7Z6L1/O75582/Q9H1Y0/P07737/P62330/Q04206/P19838/Q5TEC6/O60610/Q8N122/P42345/P59998/Q13404/Q05655/P60709/P29466/Q96RU3/P24844/P05412/O75116/P16885/P12814/Q00722/Q08752/P27986/P49840/P28482/P52789/Q9Y490/Q9P1U1/O15111/Q14653/Q9UIA0/Q15653/Q15025/O00459/P31751/Q02156/Q9Y6K9/O43353/Q05397/P42336/P61158/O15511/Q8N884/Q13185/O15143/Q14573/O43707/O43318/Q9Y4P8/P45984/P49662/P10415/Q9Y4G6/Q13418/O00329/Q9NYJ8/Q9HB90/Q86WV6/P18206/P19174/Q9H0F6/P49841/P46109/Q13546/Q96JJ3/Q12933/Q14571/Q92556/P07384/Q14141/Q9NPP4/P62979/Q13315/Q8NEB9/P62877/Q9ULZ3/Q13464/P61160
hsa05163 Human cytomegalovirus infection 117 0.5048232 2.380291 0e+00 0.0e+00 0.0e+00 1659 tags=52%, list=24%, signal=41% Q14344/Q07889/P23458/Q12802/P48454/P04049/Q08209/Q04206/P63098/Q92888/Q92574/P16298/P19838/Q13469/P40763/P01111/P59768/Q02750/Q15382/P17612/P49815/P42345/P04899/P50151/P05106/O75116/Q14289/Q00722/O95644/P27986/P28482/P36507/O15111/Q14653/O00459/P31751/Q9Y6K9/Q05397/P42336/P62879/Q8N884/P06400/Q14573/P09471/O00329/P52564/P01116/P08754/P16220/P62993/Q86WV6/P49841/Q12968/P46109/Q13546/Q12933/P15153/Q14571/Q07890/P16520/P08047
hsa04010 MAPK signaling pathway 121 0.5019789 2.371640 0e+00 0.0e+00 0.0e+00 1592 tags=50%, list=23%, signal=39% O75582/Q7LDG7/Q92918/O14733/Q07889/P48454/P04049/Q08209/Q15283/Q04206/P63098/P16298/P19838/Q9Y2U5/P01111/Q99759/Q02750/P62070/P17612/Q06413/P05412/O95644/Q9Y6R4/P46734/Q9UER7/P61224/P28482/Q12851/P36507/O15111/Q9H2K8/P51812/P31751/Q7L7X3/P10301/Q9Y6K9/O95819/P32121/P45985/P10398/O75676/Q8IW41/P21333/O43318/O75688/P51452/P45984/P53041/Q00653/Q9NYJ8/P52564/Q9BQ95/P01116/P62993/P17535/Q12968/P46109/Q12933/P15056/P15153
hsa04926 Relaxin signaling pathway 54 0.6399102 2.576007 0e+00 0.0e+00 0.0e+00 1351 tags=54%, list=19%, signal=44% O14733/Q07889/P04049/Q04206/P19838/P01111/P59768/Q02750/P17612/P04899/P50151/P05412/Q00722/P27986/P28482/P36507/O00459/P31751/P42336/P32121/P62879/P45985/P09471/P45984/O00329/P01116/P08754/P16220/P62993
hsa05135 Yersinia infection 100 0.5239483 2.417175 0e+00 0.0e+00 0.0e+00 1660 tags=57%, list=24%, signal=44% O14733/P62330/Q04206/Q92888/O43516/P15498/P42768/P19838/Q13469/P01730/Q02750/P59998/P60709/Q14161/P29466/P05412/O75116/Q14289/O95644/P27986/P46734/P84095/P28482/P36507/Q9P1U1/P06239/O15111/Q14653/O00459/P51812/P31751/Q9Y6K9/Q05397/P42336/P45985/P61158/O15511/O60331/O15143/Q16512/O43561/O43318/P45984/O00329/Q9NYJ8/P52564/O15117/P19174/P49841/Q12968/P46109/Q96JJ3/Q12933/Q16513/P15153/Q9UKW4/Q92556
hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 60 0.6109269 2.508467 0e+00 1.0e-07 0.0e+00 925 tags=55%, list=13%, signal=48% P23458/P48454/P04049/Q08209/Q04206/P63098/P16298/P19838/Q13469/P40763/P01111/Q99759/P01730/Q02750/P42345/Q9NR96/P05412/O95644/P29350/P27986/P46734/Q9HC35/P28482/P36507/P06239/O15111/Q15653/O00459/P31751/Q9Y6K9/P04234/P42336/P07766
hsa04611 Platelet activation 68 0.5726454 2.448720 0e+00 3.0e-07 1.0e-07 1211 tags=49%, list=17%, signal=41% Q14344/Q7LDG7/Q7Z5R6/P07948/Q92888/Q86UX7/P17612/P08514/O00161/P04899/P60709/P07359/P05106/O75116/P16885/Q00722/P27986/P02675/P61224/P28482/Q9Y490/P43405/O00459/P02679/P31751/P36873/P02671/P42336/Q14573/O14974/Q9Y4G6/P48736/O00329
hsa04921 Oxytocin signaling pathway 58 0.5983998 2.435148 0e+00 3.0e-07 1.0e-07 1637 tags=59%, list=23%, signal=45% P48454/P04049/Q08209/P63098/P16298/Q9BZL4/Q8IU85/Q13469/P01111/Q02750/P17612/P60660/P04899/Q06413/P60709/P24844/P05412/O75116/Q00722/O95644/P28482/P36507/P36873/Q14573/P09471/O14974/P48736/Q13131/P01116/P08754/P62136/Q12968/Q14571/P54619
hsa04371 Apelin signaling pathway 58 0.5967455 2.428416 0e+00 3.0e-07 1.0e-07 1334 tags=50%, list=19%, signal=41% Q14344/Q9Y5W3/Q05469/P04049/P01111/P59768/Q02750/P62070/P17612/P42345/P04899/P50151/Q06413/Q02078/Q00722/P28482/P36507/P31751/Q02156/P10301/P62879/P62753/Q14573/P84022/P48736/Q13131/Q9UQL6/P01116/P08754
hsa04014 Ras signaling pathway 91 0.5091061 2.308803 0e+00 3.0e-07 1.0e-07 868 tags=38%, list=12%, signal=34% Q7LDG7/Q07889/P62330/P04049/Q15283/Q9UQ13/Q04206/P11234/P19838/P14921/P01111/P59768/Q02750/P62070/P17612/P00519/Q14644/P50151/Q86YV0/P16885/O15211/P27986/P61224/P28482/P36507/O15111/O00459/Q8WWW0/Q96KP1/P31751/P10301/Q9Y6K9/P42336/P62879/Q15311
hsa04664 Fc epsilon RI signaling pathway 45 0.6356731 2.466239 0e+00 4.0e-07 2.0e-07 1651 tags=64%, list=23%, signal=50% O14733/Q07889/P04049/P07948/P15498/Q92835/P01111/Q02750/P16885/P27986/P46734/P28482/P43405/P36507/O00459/P31751/P42336/P45985/O43561/P45984/P20292/O00329/P52564/P01116/P62993/P19174/P15153/Q9UKW4/Q07890
hsa04935 Growth hormone synthesis, secretion and action 58 0.5761245 2.344500 1e-07 1.3e-06 6.0e-07 1651 tags=60%, list=23%, signal=47% Q07889/P04049/P40763/P01111/Q02750/P17612/P42345/P04899/P16885/Q00722/P27986/P46734/P28482/P36507/Q92793/O00459/P31751/Q05397/P42336/P45985/P17275/Q14573/P45984/O00329/P52564/P01116/P08754/P16220/P62993/P19174/P49841/P46109/Q14571/O60674/Q07890
hsa04660 T cell receptor signaling pathway 85 0.5145020 2.288064 1e-07 1.3e-06 6.0e-07 1481 tags=55%, list=21%, signal=44% O14733/Q07889/P48454/P04049/Q08209/Q04206/P63098/P15498/P16298/P19838/Q13469/P01111/P08575/P01730/P16333/Q02750/P05412/O95644/P29350/P27986/P28482/P36507/P06239/Q16537/O15111/Q15653/O00459/O43639/P31751/Q9Y6K9/P04234/P42336/Q9BXL7/P07766/O43561/O43318/P45984/Q15172/O75791/O00329/P67775/P01116/P62993/P19174/Q15173/P49841/Q12968
hsa04810 Regulation of actin cytoskeleton 118 0.4580122 2.159638 1e-07 1.3e-06 6.0e-07 1651 tags=51%, list=23%, signal=40% Q14344/Q07889/P07737/P04049/P48426/Q92888/Q13576/P15498/Q15052/Q9BZL4/P35579/P01111/Q02750/P62070/P11215/O60610/P08514/P59998/P60709/P05106/P24844/O75116/P12814/Q9H0Q0/P27986/P28482/P06396/Q5JSP0/P36507/Q9P1U1/O00459/P31751/P36873/P10301/Q05397/P42336/P61158/O15511/P10398/O60331/O15143/O43707/P23229/O14974/P26038/P23528/Q8WYL5/O00329/P05107/P01116/Q9NUQ9/P18206/P62136/P78356/P46109/P15056/P15153/Q9H1C0/Q9UKW4/Q07890
hsa04722 Neurotrophin signaling pathway 73 0.5375211 2.316464 1e-07 2.2e-06 1.0e-06 1552 tags=49%, list=22%, signal=39% O75582/O14733/Q07889/P04049/Q13905/Q04206/P52566/P19838/P01111/Q99759/Q02750/P00519/Q05655/O14492/P05412/P16885/P27986/P61224/P28482/P36507/Q15653/O00459/P51812/P31751/P52565/O43353/P42336/P45984/P10415/O00329/P01116/P62993/P19174/P49841/P46109/P15056
hsa04072 Phospholipase D signaling pathway 62 0.5537948 2.290068 2e-07 2.6e-06 1.2e-06 1408 tags=53%, list=20%, signal=43% Q14344/Q07889/P62330/P04049/Q92574/P11234/P01111/Q02750/Q15382/P62070/P49815/P42345/P16885/Q14289/Q00722/P27986/P28482/P43405/P36507/Q9UIA0/O00459/P31751/P10301/P42336/P52824/O60331/Q9UQ16/P48736/O00329/P23743/P01116/P62993/P19174
hsa05200 Pathways in cancer 201 0.3809319 1.957423 2e-07 2.6e-06 1.2e-06 1659 tags=40%, list=24%, signal=32% Q14344/O75582/Q7LDG7/Q07889/P23458/P04049/Q04206/Q92888/P11234/P19838/O14727/P14921/P40763/P01111/P59768/Q02750/P17612/P00519/O43521/P08514/P42345/P04899/P50151/P98170/P05412/P24941/O75116/P16885/Q00722/P46527/P27986/Q9HC35/P24043/P28482/Q01196/O14880/Q15788/P40337/P36507/O15111/P09601/Q92793/O00459/Q8WWW0/P31751/Q9Y6K9/Q05397/P42336/P62879/Q15311/P11166/P06753/P10398/P06400/P84022/P10620/Q13105/P45984/P23229/P10415/Q00653/O00329/P56545/P27540/P01116/P08754/P78417/Q13489/P62993/Q92769/P19174/P49841/P46109/Q12933/P15056/P15153/Q9H1C0/O60674/Q07890/P16520/P08047
hsa04141 Protein processing in endoplasmic reticulum 118 -0.4688716 -2.151616 2e-07 2.8e-06 1.3e-06 1369 tags=35%, list=19%, signal=28% P60604/P49257/P27824/P08238/Q86TM6/Q9NYU2/Q9UBS4/Q13217/Q8N2K1/P30040/Q13724/Q99442/P13667/Q92611/Q14697/Q9UKM7/Q9NRD1/Q9UBV2/Q92890/P11021/Q8TAT6/Q12907/Q92575/O94855/P53992/Q9H0U3/Q15436/Q15084/P14625/P30101/Q8TCJ2/P04844/Q9HCU5/Q96DZ1/O94979/P51571/P04843/P46977/P39656/Q9Y4L1/Q9P2E9
hsa04218 Cellular senescence 90 0.4879101 2.205504 2e-07 3.1e-06 1.5e-06 1795 tags=57%, list=25%, signal=43% P48454/P04049/Q08209/Q04206/P63098/Q92574/P16298/P19838/Q13469/P14921/P01111/Q02750/Q15382/P62070/O60934/P49815/P42345/Q6MZP7/P24941/O95644/Q08752/P27986/P46734/P28482/P36507/O00459/Q8WWW0/P31751/P36873/P10301/P42336/P49959/Q96EB6/P06400/O60671/Q14573/P84022/O00329/P52564/P01116/P62136/Q12968/Q16254/O96017/Q14571/Q92878/P07384/O60921/Q09028/P01137/Q13315
hsa04151 PI3K-Akt signaling pathway 126 0.4402091 2.084492 3e-07 3.8e-06 1.8e-06 1351 tags=42%, list=19%, signal=35% Q07889/P23458/P04049/Q04206/Q92574/P19838/P01111/P59768/Q02750/Q15382/P49815/P31946/O43521/P08514/Q8N122/P42345/P50151/P05106/Q96BR1/P24941/P46527/P27986/P24043/P28482/P07996/P43405/P36507/Q6ZUJ8/Q16537/O15111/P23588/O00459/P31751/Q9Y6K9/P63104/Q05397/P42336/P62879/P62753/Q16512/P15391/P23229/P10415/Q15172/P48736/O00329/P67775/P27348/Q13131/P61981/P01116/P16220/P62993
hsa04912 GnRH signaling pathway 41 0.6351122 2.407716 3e-07 3.8e-06 1.8e-06 1351 tags=54%, list=19%, signal=44% O14733/Q07889/P04049/Q9Y2U5/P01111/Q99759/Q02750/P17612/Q05655/P05412/Q14289/Q00722/Q9Y6R4/P46734/P28482/P36507/P45985/Q14573/P45984/P52564/P01116/P62993
hsa00510 N-Glycan biosynthesis 35 -0.6568582 -2.296012 4e-07 4.5e-06 2.1e-06 1003 tags=43%, list=14%, signal=37% Q9NP73/Q13724/Q14697/Q9UKM7/P15907/Q10469/Q9BT22/Q9H0U3/Q8TCJ2/P04844/P04843/P46977/P39656/Q16706/P26572

Interpreting the results

Gene set enrichment analysis output includes the following columns:

Based on the sign of the normalized enrichment score, the pathway “B cell receptor signaling pathway” is positively enriched and the pathway “Protein processing in endoplasmic reticulum” is negatively enriched.

This means that the B cell receptor signaling pathway is enriched among proteins with large positive t-statistics (that are higher in mutated subjects). The pathway Protein processing in endoplasmic reticulum is enriched among proteins with large negative t-statistics (that are lower in mutated subjects).

Plots

Dotplot of top terms

dotplot(gse)

Treeplot of top pathways

Pathways are clustered based on similarity, defined by overlap of which proteins are in that pathway. Clusters are then labelled with commonly occuring words.

gse2 <- enrichplot::pairwise_termsim(gse)
enrichplot::treeplot(gse2)

R session information

sessionInfo()
## R version 4.5.1 (2025-06-13 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows 11 x64 (build 26100)
## 
## Matrix products: default
##   LAPACK version 3.12.1
## 
## locale:
## [1] LC_COLLATE=English_United States.utf8 
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## time zone: America/Los_Angeles
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices datasets  utils     methods   base     
## 
## other attached packages:
## [1] kableExtra_1.4.0       clusterProfiler_4.16.0
## 
## loaded via a namespace (and not attached):
##   [1] DBI_1.2.3               gson_0.1.0              rlang_1.1.6            
##   [4] magrittr_2.0.3          DOSE_4.2.0              compiler_4.5.1         
##   [7] RSQLite_2.4.3           systemfonts_1.2.3       png_0.1-8              
##  [10] vctrs_0.6.5             reshape2_1.4.4          stringr_1.5.1          
##  [13] pkgconfig_2.0.3         crayon_1.5.3            fastmap_1.2.0          
##  [16] XVector_0.48.0          labeling_0.4.3          rmarkdown_2.29         
##  [19] enrichplot_1.28.4       UCSC.utils_1.4.0        purrr_1.1.0            
##  [22] bit_4.6.0               xfun_0.53               cachem_1.1.0           
##  [25] aplot_0.2.8             GenomeInfoDb_1.44.2     jsonlite_2.0.0         
##  [28] blob_1.2.4              BiocParallel_1.42.1     parallel_4.5.1         
##  [31] R6_2.6.1                bslib_0.9.0             stringi_1.8.7          
##  [34] RColorBrewer_1.1-3      jquerylib_0.1.4         GOSemSim_2.34.0        
##  [37] Rcpp_1.1.0              knitr_1.50              snow_0.4-4             
##  [40] ggtangle_0.0.7          R.utils_2.13.0          IRanges_2.42.0         
##  [43] Matrix_1.7-3            splines_4.5.1           igraph_2.1.4           
##  [46] tidyselect_1.2.1        qvalue_2.40.0           rstudioapi_0.17.1      
##  [49] yaml_2.3.10             codetools_0.2-20        lattice_0.22-7         
##  [52] tibble_3.3.0            plyr_1.8.9              withr_3.0.2            
##  [55] Biobase_2.68.0          treeio_1.32.0           KEGGREST_1.48.1        
##  [58] evaluate_1.0.4          gridGraphics_0.5-1      xml2_1.4.0             
##  [61] Biostrings_2.76.0       pillar_1.11.0           BiocManager_1.30.26    
##  [64] ggtree_3.16.3           renv_1.1.5              stats4_4.5.1           
##  [67] ggfun_0.2.0             generics_0.1.4          S4Vectors_0.46.0       
##  [70] ggplot2_3.5.2           scales_1.4.0            tidytree_0.4.6         
##  [73] glue_1.8.0              lazyeval_0.2.2          tools_4.5.1            
##  [76] ggnewscale_0.5.2        data.table_1.17.8       fgsea_1.34.2           
##  [79] fs_1.6.6                fastmatch_1.1-6         cowplot_1.2.0          
##  [82] grid_4.5.1              tidyr_1.3.1             ape_5.8-1              
##  [85] AnnotationDbi_1.70.0    colorspace_2.1-1        nlme_3.1-168           
##  [88] GenomeInfoDbData_1.2.14 patchwork_1.3.2         cli_3.6.5              
##  [91] rappdirs_0.3.3          textshaping_1.0.1       viridisLite_0.4.2      
##  [94] svglite_2.2.1           dplyr_1.1.4             gtable_0.3.6           
##  [97] R.methodsS3_1.8.2       yulab.utils_0.2.1       sass_0.4.10            
## [100] digest_0.6.37           BiocGenerics_0.54.0     ggrepel_0.9.6          
## [103] ggplotify_0.1.2         farver_2.1.2            memoise_2.0.1          
## [106] htmltools_0.5.8.1       R.oo_1.27.1             lifecycle_1.0.4        
## [109] httr_1.4.7              GO.db_3.21.0            bit64_4.6.0-1