Differential Gene Expression Analysis in R
Differential Gene Expression (DGE) between conditions is determined from count data
Generally speaking differential expression analysis is performed in a very similar manner to metabolomics, proteomics, or DNA microarrays, once normalization and transformations have been performed.
A lot of RNA-seq analysis has been done in R and so there are many packages available to analyze and view this data. Two of the most commonly used are:
DESeq2, developed by Simon Anders (also created htseq) in Wolfgang Huber’s group at EMBL
edgeR and Voom (extension to Limma [microarrays] for RNA-seq), developed out of Gordon Smyth’s group from the Walter and Eliza Hall Institute of Medical Research in Australia
http://bioconductor.org/packages/release/BiocViews.html#___RNASeq
Differential Expression Analysis with Limma-Voom
limma is an R package that was originally developed for differential expression (DE) analysis of gene expression microarray data.
voom is a function in the limma package that transforms RNA-Seq data for use with limma.
Together they allow fast, flexible, and powerful analyses of RNA-Seq data. Limma-voom is our tool of choice for DE analyses because it:
Allows for incredibly flexible model specification (you can include multiple categorical and continuous variables, allowing incorporation of almost any kind of metadata).
Based on simulation studies, maintains the false discovery rate at or below the nominal rate, unlike some other packages.
Empirical Bayes smoothing of gene-wise standard deviations provides increased power.
Basic Steps of Differential Gene Expression
Read count data and annotation into R and preprocessing.
Calculate normalization factors (sample-specific adjustments)
Filter genes (uninteresting genes, e.g. unexpressed)
Account for expression-dependent variability by transformation, weighting, or modeling
Fitting a linear model
Perform statistical comparisons of interest (using contrasts)
Adjust for multiple testing, Benjamini-Hochberg (BH) or q-value
Check results for confidence
Attach annotation if available and write tables
1. Read in the counts table and create our DGEList
counts <- read.delim ( "rnaseq_workshop_counts.txt" , row.names = 1 )
head ( counts )
mouse_110_WT_C mouse_110_WT_NC mouse_148_WT_C
ENSMUSG00000102693.2 0 0 0
ENSMUSG00000064842.3 0 0 0
ENSMUSG00000051951.6 0 0 0
ENSMUSG00000102851.2 0 0 0
ENSMUSG00000103377.2 0 0 0
ENSMUSG00000104017.2 0 0 0
mouse_148_WT_NC mouse_158_WT_C mouse_158_WT_NC
ENSMUSG00000102693.2 0 0 0
ENSMUSG00000064842.3 0 0 0
ENSMUSG00000051951.6 0 0 0
ENSMUSG00000102851.2 0 0 0
ENSMUSG00000103377.2 0 0 0
ENSMUSG00000104017.2 0 0 0
mouse_183_KOMIR150_C mouse_183_KOMIR150_NC
ENSMUSG00000102693.2 0 0
ENSMUSG00000064842.3 0 0
ENSMUSG00000051951.6 0 0
ENSMUSG00000102851.2 0 0
ENSMUSG00000103377.2 0 0
ENSMUSG00000104017.2 0 0
mouse_198_KOMIR150_C mouse_198_KOMIR150_NC
ENSMUSG00000102693.2 0 0
ENSMUSG00000064842.3 0 0
ENSMUSG00000051951.6 0 0
ENSMUSG00000102851.2 0 0
ENSMUSG00000103377.2 0 0
ENSMUSG00000104017.2 0 0
mouse_206_KOMIR150_C mouse_206_KOMIR150_NC
ENSMUSG00000102693.2 0 0
ENSMUSG00000064842.3 0 0
ENSMUSG00000051951.6 0 0
ENSMUSG00000102851.2 0 0
ENSMUSG00000103377.2 0 0
ENSMUSG00000104017.2 0 0
mouse_2670_KOTet3_C mouse_2670_KOTet3_NC
ENSMUSG00000102693.2 0 0
ENSMUSG00000064842.3 0 0
ENSMUSG00000051951.6 0 0
ENSMUSG00000102851.2 0 0
ENSMUSG00000103377.2 0 0
ENSMUSG00000104017.2 0 0
mouse_7530_KOTet3_C mouse_7530_KOTet3_NC
ENSMUSG00000102693.2 0 0
ENSMUSG00000064842.3 0 0
ENSMUSG00000051951.6 0 0
ENSMUSG00000102851.2 0 0
ENSMUSG00000103377.2 0 0
ENSMUSG00000104017.2 0 0
mouse_7531_KOTet3_C mouse_7532_WT_NC mouse_H510_WT_C
ENSMUSG00000102693.2 0 0 0
ENSMUSG00000064842.3 0 0 0
ENSMUSG00000051951.6 0 0 0
ENSMUSG00000102851.2 0 0 0
ENSMUSG00000103377.2 0 0 0
ENSMUSG00000104017.2 0 0 0
mouse_H510_WT_NC mouse_H514_WT_C mouse_H514_WT_NC
ENSMUSG00000102693.2 0 0 0
ENSMUSG00000064842.3 0 0 0
ENSMUSG00000051951.6 0 0 0
ENSMUSG00000102851.2 0 0 0
ENSMUSG00000103377.2 0 0 0
ENSMUSG00000104017.2 0 0 0
Create Differential Gene Expression List Object (DGEList) object
A DGEList is an object in the package edgeR for storing count data, normalization factors, and other information
1a. Read in Annotation
anno <- read.delim ( "ensembl_mm_109.txt" , as.is = T )
dim ( anno )
[1] 57010 11
Gene.stable.ID Gene.stable.ID.version
1 ENSMUSG00000064336 ENSMUSG00000064336.1
2 ENSMUSG00000064337 ENSMUSG00000064337.1
3 ENSMUSG00000064338 ENSMUSG00000064338.1
4 ENSMUSG00000064339 ENSMUSG00000064339.1
5 ENSMUSG00000064340 ENSMUSG00000064340.1
6 ENSMUSG00000064341 ENSMUSG00000064341.1
Gene.description
1 mitochondrially encoded tRNA phenylalanine [Source:MGI Symbol;Acc:MGI:102487]
2 mitochondrially encoded 12S rRNA [Source:MGI Symbol;Acc:MGI:102493]
3 mitochondrially encoded tRNA valine [Source:MGI Symbol;Acc:MGI:102472]
4 mitochondrially encoded 16S rRNA [Source:MGI Symbol;Acc:MGI:102492]
5 mitochondrially encoded tRNA leucine 1 [Source:MGI Symbol;Acc:MGI:102482]
6 mitochondrially encoded NADH dehydrogenase 1 [Source:MGI Symbol;Acc:MGI:101787]
Chromosome.scaffold.name Gene.start..bp. Gene.end..bp. Strand Gene.name
1 MT 1 68 1 mt-Tf
2 MT 70 1024 1 mt-Rnr1
3 MT 1025 1093 1 mt-Tv
4 MT 1094 2675 1 mt-Rnr2
5 MT 2676 2750 1 mt-Tl1
6 MT 2751 3707 1 mt-Nd1
Transcript.count Gene...GC.content Gene.type
1 1 30.88 Mt_tRNA
2 1 35.81 Mt_rRNA
3 1 39.13 Mt_tRNA
4 1 35.40 Mt_rRNA
5 1 44.00 Mt_tRNA
6 1 37.62 protein_coding
Gene.stable.ID Gene.stable.ID.version
57005 ENSMUSG00000087337 ENSMUSG00000087337.2
57006 ENSMUSG00000089575 ENSMUSG00000089575.3
57007 ENSMUSG00000119806 ENSMUSG00000119806.1
57008 ENSMUSG00000087609 ENSMUSG00000087609.2
57009 ENSMUSG00000119525 ENSMUSG00000119525.1
57010 ENSMUSG00000083391 ENSMUSG00000083391.3
Gene.description
57005 predicted gene 14144 [Source:MGI Symbol;Acc:MGI:3702160]
57006 predicted gene, 23005 [Source:MGI Symbol;Acc:MGI:5452782]
57007 predicted gene, 24077 [Source:MGI Symbol;Acc:MGI:5453854]
57008 RIKEN cDNA 4930442J19 gene [Source:MGI Symbol;Acc:MGI:1921910]
57009 predicted gene, 23261 [Source:MGI Symbol;Acc:MGI:5453038]
57010 predicted gene 14148 [Source:MGI Symbol;Acc:MGI:3651554]
Chromosome.scaffold.name Gene.start..bp. Gene.end..bp. Strand
57005 2 151106523 151120756 -1
57006 2 151124895 151125030 -1
57007 2 151142864 151142999 1
57008 2 151143894 151158167 1
57009 2 151214283 151214418 -1
57010 2 151215928 151216967 1
Gene.name Transcript.count Gene...GC.content Gene.type
57005 Gm14144 1 39.95 lncRNA
57006 Gm23005 1 43.38 snoRNA
57007 Gm24077 1 44.12 snoRNA
57008 4930442J19Rik 2 40.05 lncRNA
57009 Gm23261 1 45.59 snoRNA
57010 Gm14148 1 53.75 processed_pseudogene
any ( duplicated ( anno $ Gene.stable.ID ))
[1] FALSE
1b. Derive experiment metadata from the sample names
Our experiment has two factors, genotype (“WT”, “KOMIR150”, or “KOTet3”) and cell type (“C” or “NC”).
The sample names are “mouse” followed by an animal identifier, followed by the genotype, followed by the cell type.
sample_names <- colnames ( counts )
metadata <- as.data.frame ( strsplit2 ( sample_names , c ( "_" ))[, 2 : 4 ], row.names = sample_names )
colnames ( metadata ) <- c ( "mouse" , "genotype" , "cell_type" )
Create a new variable “group” that combines genotype and cell type.
metadata $ group <- interaction ( metadata $ genotype , metadata $ cell_type )
table ( metadata $ group )
KOMIR150.C KOTet3.C WT.C KOMIR150.NC KOTet3.NC WT.NC
3 3 5 3 2 6
110 148 158 183 198 206 2670 7530 7531 7532 H510 H514
2 2 2 2 2 2 2 2 1 1 2 2
Note: you can also enter group information manually, or read it in from an external file. If you do this, it is $VERY, VERY, VERY$ important that you make sure the metadata is in the same order as the column names of the counts table.
Quiz 1
Submit Quiz
2. Preprocessing and Normalization factors
In differential expression analysis, only sample-specific effects need to be normalized, we are NOT concerned with comparisons and quantification of absolute expression.
Sequence depth – is a sample specific effect and needs to be adjusted for.
RNA composition - finding a set of scaling factors for the library sizes that minimize the log-fold changes between the samples for most genes (edgeR uses a trimmed mean of M-values between each pair of sample)
GC content – is NOT sample-specific (except when it is)
Gene Length – is NOT sample-specific (except when it is)
In edgeR/limma, you calculate normalization factors to scale the raw library sizes (number of reads) using the function calcNormFactors, which by default uses TMM (weighted trimmed means of M values to the reference). Assumes most genes are not DE.
Proposed by Robinson and Oshlack (2010).
d0 <- calcNormFactors ( d0 )
d0 $ samples
group lib.size norm.factors
mouse_110_WT_C 1 2304023 1.0245280
mouse_110_WT_NC 1 2787240 0.9867519
mouse_148_WT_C 1 2771020 1.0173432
mouse_148_WT_NC 1 2567752 0.9825135
mouse_158_WT_C 1 2925991 1.0036005
mouse_158_WT_NC 1 2606603 0.9659563
mouse_183_KOMIR150_C 1 2489520 1.0162146
mouse_183_KOMIR150_NC 1 1827790 0.9951951
mouse_198_KOMIR150_C 1 2801612 1.0114713
mouse_198_KOMIR150_NC 1 2876668 0.9869667
mouse_206_KOMIR150_C 1 1368036 1.0007811
mouse_206_KOMIR150_NC 1 937916 0.9711335
mouse_2670_KOTet3_C 1 2864926 1.0034471
mouse_2670_KOTet3_NC 1 2890691 0.9735639
mouse_7530_KOTet3_C 1 2571863 1.0327346
mouse_7530_KOTet3_NC 1 2828322 0.9580725
mouse_7531_KOTet3_C 1 2611767 1.0368431
mouse_7532_WT_NC 1 2654919 1.0023156
mouse_H510_WT_C 1 2539507 1.0350765
mouse_H510_WT_NC 1 2777733 1.0142696
mouse_H514_WT_C 1 2255608 0.9949890
mouse_H514_WT_NC 1 2588481 0.9914444
Note: calcNormFactors doesn’t normalize the data, it just calculates normalization factors for use downstream.
3. Filtering genes
We filter genes based on non-experimental factors to reduce the number of genes/tests being conducted and therefor do not have to be accounted for in our transformation or multiple testing correction. Commonly we try to remove genes that are either a) unexpressed, or b) unchanging (low-variability).
Common filters include:
to remove genes with a max value (X) of less then Y.
to remove genes that are less than X normalized read counts (cpm) across a certain number of samples. Ex: rowSums(cpms <=1) < 3 , require at least 1 cpm in at least 3 samples to keep.
A less used filter is for genes with minimum variance across all samples, so if a gene isn’t changing (constant expression) its inherently not interesting therefor no need to test.
We will use the built in function filterByExpr() to filter low-expressed genes. filterByExpr uses the experimental design to determine how many samples a gene needs to be expressed in to stay. Importantly, once this number of samples has been determined, the group information is not used in filtering.
Using filterByExpr requires specifying the model we will use to analysis our data.
The model you use will change for every experiment, and this step should be given the most time and attention.*
We use a model that includes group and (in order to account for the paired design) mouse.
group <- metadata $ group
mouse <- metadata $ mouse
mm <- model.matrix ( ~ 0 + group + mouse )
head ( mm )
groupKOMIR150.C groupKOTet3.C groupWT.C groupKOMIR150.NC groupKOTet3.NC
1 0 0 1 0 0
2 0 0 0 0 0
3 0 0 1 0 0
4 0 0 0 0 0
5 0 0 1 0 0
6 0 0 0 0 0
groupWT.NC mouse148 mouse158 mouse183 mouse198 mouse206 mouse2670 mouse7530
1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0
6 1 0 1 0 0 0 0 0
mouse7531 mouse7532 mouseH510 mouseH514
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
keep <- filterByExpr ( d0 , mm )
sum ( keep ) # number of genes retained
[1] 11512
“Low-expressed” depends on the dataset and can be subjective.
Visualizing your data with a Multidimensional scaling (MDS) plot.
plotMDS ( d , col = as.numeric ( metadata $ group ), cex = 1 )
The MDS plot tells you A LOT about what to expect from your experiment.
3a. Extracting “normalized” expression table
RPKM vs. FPKM vs. CPM and Model Based
RPKM - Reads per kilobase per million mapped reads
FPKM - Fragments per kilobase per million mapped reads
logCPM – log Counts per million [ good for producing MDS plots, estimate of normalized values in model based ]
Model based - original read counts are not themselves transformed, but rather correction factors are used in the DE model itself.
We use the cpm
function with log=TRUE to obtain log-transformed normalized expression data. On the log scale, the data has less mean-dependent variability and is more suitable for plotting.
logcpm <- cpm ( d , prior.count = 2 , log = TRUE )
write.table ( logcpm , "rnaseq_workshop_normalized_counts.txt" , sep = "\t" , quote = F )
Quiz 2
Submit Quiz
4a. Voom
y <- voom ( d , mm , plot = T )
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
What is voom doing?
Counts are transformed to log2 counts per million reads (CPM), where “per million reads” is defined based on the normalization factors we calculated earlier.
A linear model is fitted to the log2 CPM for each gene, and the residuals are calculated.
A smoothed curve is fitted to the sqrt(residual standard deviation) by average expression.
(see red line in plot above)
The smoothed curve is used to obtain weights for each gene and sample that are passed into limma along with the log2 CPMs.
More details at “voom: precision weights unlock linear model analysis tools for RNA-seq read counts ”
If your voom plot looks like the below (performed on the raw data), you might want to filter more:
tmp <- voom ( d0 , mm , plot = T )
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 57010 probe(s)
5. Fitting linear models in limma
lmFit fits a linear model using weighted least squares for each gene:
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
groupKOMIR150.C groupKOTet3.C groupWT.C groupKOMIR150.NC
ENSMUSG00000033845.14 4.772837 4.963655 4.704938 4.971355
ENSMUSG00000025903.15 4.980285 5.414525 5.396681 5.030629
ENSMUSG00000033813.16 5.911137 5.666063 5.810657 5.983298
ENSMUSG00000033793.13 5.230663 5.283875 5.423001 5.069581
ENSMUSG00000090031.4 2.305425 3.493513 1.916860 2.465590
ENSMUSG00000025907.15 6.383192 6.466658 6.485529 6.197580
groupKOTet3.NC groupWT.NC mouse148 mouse158
ENSMUSG00000033845.14 4.609835 4.507908 0.23436789 0.15808834
ENSMUSG00000025903.15 5.305906 5.156686 -0.07626244 -0.06283904
ENSMUSG00000033813.16 5.858753 5.828425 0.04411038 0.03083226
ENSMUSG00000033793.13 4.774806 5.149948 -0.20016385 -0.25080455
ENSMUSG00000090031.4 3.856040 2.136507 -0.12083090 0.10917459
ENSMUSG00000025907.15 6.551041 6.214839 -0.15305947 -0.06970361
mouse183 mouse198 mouse206 mouse2670 mouse7530
ENSMUSG00000033845.14 -0.34352972 -0.06398921 NA -0.06090536 -0.005868771
ENSMUSG00000025903.15 0.37805043 0.34135424 NA 0.03692425 -0.148032773
ENSMUSG00000033813.16 -0.22263564 -0.01365372 NA 0.16989159 0.194964781
ENSMUSG00000033793.13 -0.27484845 0.07620846 NA 0.21176027 0.474793360
ENSMUSG00000090031.4 -0.35385622 0.15261515 NA -1.10525514 -0.205389075
ENSMUSG00000025907.15 -0.06134122 0.16667360 NA -0.05262854 -0.116519792
mouse7531 mouse7532 mouseH510 mouseH514
ENSMUSG00000033845.14 NA 0.13536933 0.06729753 0.1296202
ENSMUSG00000025903.15 NA 0.17950152 0.11575108 0.1254478
ENSMUSG00000033813.16 NA 0.05877819 0.03878651 -0.0376184
ENSMUSG00000033793.13 NA -0.32354845 -0.09193819 -0.1845264
ENSMUSG00000090031.4 NA 1.89443112 1.24527471 1.4453435
ENSMUSG00000025907.15 NA 0.10447457 -0.16556570 -0.2535768
Comparisons between groups (log fold-changes) are obtained as contrasts of these fitted linear models:
6. Specify which groups to compare using contrasts:
Comparison between cell types for genotype WT.
contr <- makeContrasts ( groupWT.C - groupWT.NC , levels = colnames ( coef ( fit )))
contr
Contrasts
Levels groupWT.C - groupWT.NC
groupKOMIR150.C 0
groupKOTet3.C 0
groupWT.C 1
groupKOMIR150.NC 0
groupKOTet3.NC 0
groupWT.NC -1
mouse148 0
mouse158 0
mouse183 0
mouse198 0
mouse206 0
mouse2670 0
mouse7530 0
mouse7531 0
mouse7532 0
mouseH510 0
mouseH514 0
6a. Estimate contrast for each gene
tmp <- contrasts.fit ( fit , contr )
The variance characteristics of low expressed genes are different from high expressed genes, if treated the same, the effect is to over represent low expressed genes in the DE list. This is corrected for by the log transformation and voom. However, some genes will have increased or decreased variance that is not a result of low expression, but due to other random factors. We are going to run empirical Bayes to adjust the variance of these genes.
Empirical Bayes smoothing of standard errors (shifts standard errors that are much larger or smaller than those from other genes towards the average standard error) (see “Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments ”
6b. Apply EBayes
7. Multiple Testing Adjustment
The TopTable. Adjust for multiple testing using method of Benjamini & Hochberg (BH), or its ‘alias’ fdr. “Controlling the false discovery rate: a practical and powerful approach to multiple testing .
here n=Inf
says to produce the topTable for all genes.
top.table <- topTable ( tmp , adjust.method = "BH" , sort.by = "P" , n = Inf )
Multiple Testing Correction
Simply a must! Best choices are:
FDR (false discovery rate), such as Benjamini-Hochberg (1995).
Qvalue - Storey (2002)
The FDR (or qvalue) is a statement about the list and is no longer about the gene (pvalue). So a FDR of 0.05, says you expect 5% false positives among the list of genes with an FDR of 0.05 or less.
The statement “Statistically significantly different” means FDR of 0.05 or less.
7a. How many DE genes are there (false discovery rate corrected)?
length ( which ( top.table $ adj.P.Val < 0.05 ))
[1] 5682
8. Check your results for confidence.
You’ve conducted an experiment, you’ve seen a phenotype. Now check which genes are most differentially expressed (show the top 50)? Look up these top genes, their description and ensure they relate to your experiment/phenotype.
logFC AveExpr t P.Value adj.P.Val
ENSMUSG00000020608.8 -2.493130 7.869004 -44.14352 8.218003e-19 9.460565e-15
ENSMUSG00000052212.7 4.539354 6.223898 40.65736 3.232959e-18 1.860891e-14
ENSMUSG00000049103.15 2.152305 9.912143 38.76983 7.127039e-18 2.734882e-14
ENSMUSG00000030203.18 -4.128233 7.025932 -33.50481 8.029402e-17 2.228834e-13
ENSMUSG00000027508.16 -1.906648 8.143581 -32.87085 1.101664e-16 2.228834e-13
ENSMUSG00000021990.17 -2.686905 8.379626 -32.76572 1.161658e-16 2.228834e-13
ENSMUSG00000037820.16 -4.178760 7.141891 -31.77612 1.929424e-16 3.173076e-13
ENSMUSG00000026193.16 4.795082 10.171591 31.10868 2.740507e-16 3.709716e-13
ENSMUSG00000024164.16 1.789078 9.897286 31.00222 2.900230e-16 3.709716e-13
ENSMUSG00000038807.20 -1.572034 9.037110 -30.77364 3.277408e-16 3.772952e-13
ENSMUSG00000037185.10 -1.545563 9.505610 -30.38871 4.034762e-16 4.222562e-13
ENSMUSG00000030342.9 -3.687260 6.068776 -30.15411 4.585503e-16 4.399026e-13
ENSMUSG00000048498.9 -5.800771 6.532762 -29.90498 5.258462e-16 4.656570e-13
ENSMUSG00000051177.17 3.180492 5.017386 29.36517 7.101907e-16 5.274520e-13
ENSMUSG00000021614.17 5.976450 5.456194 29.32405 7.267961e-16 5.274520e-13
ENSMUSG00000027215.14 -2.583659 6.924810 -29.30874 7.330813e-16 5.274520e-13
ENSMUSG00000030413.8 -2.616187 6.659403 -29.17831 7.890290e-16 5.343118e-13
ENSMUSG00000039959.14 -1.492452 8.958932 -28.98900 8.784157e-16 5.617956e-13
ENSMUSG00000029254.17 -2.403420 6.434301 -28.83935 9.566448e-16 5.728322e-13
ENSMUSG00000020108.5 -2.056257 6.977319 -28.77031 9.951914e-16 5.728322e-13
ENSMUSG00000028885.9 -2.362908 7.077824 -28.60037 1.097250e-15 5.805778e-13
ENSMUSG00000020437.13 -1.209857 10.245636 -28.53978 1.136264e-15 5.805778e-13
ENSMUSG00000018168.9 -3.909027 5.413591 -28.50407 1.159945e-15 5.805778e-13
ENSMUSG00000023827.9 -2.154776 6.436057 -28.40706 1.226951e-15 5.885277e-13
ENSMUSG00000020212.15 -2.174074 6.806148 -28.06641 1.496626e-15 6.891664e-13
ENSMUSG00000038147.15 1.679286 7.172528 27.57769 1.998385e-15 8.848235e-13
ENSMUSG00000022584.15 4.714295 6.764996 27.46247 2.140876e-15 9.128062e-13
ENSMUSG00000023809.11 -3.192343 4.819492 -27.29551 2.366751e-15 9.730728e-13
ENSMUSG00000020387.16 -4.939993 4.360263 -27.07193 2.709491e-15 1.075574e-12
ENSMUSG00000021728.9 1.659001 8.388920 26.82524 3.149454e-15 1.208551e-12
ENSMUSG00000020272.9 -1.307883 10.477646 -26.64294 3.522875e-15 1.308237e-12
ENSMUSG00000018001.19 -2.621412 7.202409 -26.47379 3.911419e-15 1.402279e-12
ENSMUSG00000044783.17 -1.739259 7.018167 -26.42979 4.019736e-15 1.402279e-12
ENSMUSG00000008496.20 -1.492397 9.437025 -26.24820 4.501574e-15 1.468230e-12
ENSMUSG00000026923.16 1.995423 6.646797 26.21732 4.589425e-15 1.468230e-12
ENSMUSG00000042700.17 -1.830400 6.106321 -26.19544 4.652768e-15 1.468230e-12
ENSMUSG00000035493.11 1.911074 9.780777 26.17291 4.718947e-15 1.468230e-12
ENSMUSG00000039109.18 4.732427 8.315758 25.43302 7.553645e-15 2.288357e-12
ENSMUSG00000043263.14 1.777767 7.862452 25.17310 8.938720e-15 2.638527e-12
ENSMUSG00000051457.8 -2.270967 9.825287 -25.09759 9.389699e-15 2.666143e-12
ENSMUSG00000029287.15 -3.786723 5.433231 -25.08044 9.495473e-15 2.666143e-12
ENSMUSG00000033705.18 1.683257 7.147600 24.87296 1.087952e-14 2.982025e-12
ENSMUSG00000022818.14 -1.757183 6.811563 -24.68368 1.232900e-14 3.300731e-12
ENSMUSG00000027435.9 3.024522 6.749402 24.49769 1.395372e-14 3.650800e-12
ENSMUSG00000016496.8 -3.570321 6.433647 -24.41867 1.471115e-14 3.755765e-12
ENSMUSG00000050335.18 1.101406 8.992598 24.38893 1.500740e-14 3.755765e-12
ENSMUSG00000005800.4 5.724669 4.153671 24.17782 1.730061e-14 4.237545e-12
ENSMUSG00000032035.17 -4.401372 5.196779 -24.04687 1.890703e-14 4.534536e-12
ENSMUSG00000034731.12 -1.756879 6.627812 -23.93690 2.037809e-14 4.777498e-12
ENSMUSG00000025701.13 -2.752185 5.304627 -23.91042 2.075008e-14 4.777498e-12
B
ENSMUSG00000020608.8 33.38996
ENSMUSG00000052212.7 31.53894
ENSMUSG00000049103.15 31.31019
ENSMUSG00000030203.18 28.83527
ENSMUSG00000027508.16 28.58448
ENSMUSG00000021990.17 28.52970
ENSMUSG00000037820.16 27.95664
ENSMUSG00000026193.16 27.57318
ENSMUSG00000024164.16 27.53988
ENSMUSG00000038807.20 27.45455
ENSMUSG00000037185.10 27.21836
ENSMUSG00000030342.9 26.99398
ENSMUSG00000048498.9 26.66478
ENSMUSG00000051177.17 26.28212
ENSMUSG00000021614.17 25.47280
ENSMUSG00000027215.14 26.68986
ENSMUSG00000030413.8 26.61881
ENSMUSG00000039959.14 26.44418
ENSMUSG00000029254.17 26.41588
ENSMUSG00000020108.5 26.37860
ENSMUSG00000028885.9 26.29350
ENSMUSG00000020437.13 26.10015
ENSMUSG00000018168.9 26.02538
ENSMUSG00000023827.9 26.17056
ENSMUSG00000020212.15 25.98397
ENSMUSG00000038147.15 25.68536
ENSMUSG00000022584.15 25.60670
ENSMUSG00000023809.11 25.12667
ENSMUSG00000020387.16 23.92006
ENSMUSG00000021728.9 25.17485
ENSMUSG00000020272.9 24.91139
ENSMUSG00000018001.19 25.01060
ENSMUSG00000044783.17 24.98954
ENSMUSG00000008496.20 24.73595
ENSMUSG00000026923.16 24.85870
ENSMUSG00000042700.17 24.84489
ENSMUSG00000035493.11 24.67448
ENSMUSG00000039109.18 24.30019
ENSMUSG00000043263.14 24.12598
ENSMUSG00000051457.8 23.94796
ENSMUSG00000029287.15 24.05666
ENSMUSG00000033705.18 23.96609
ENSMUSG00000022818.14 23.86237
ENSMUSG00000027435.9 23.75649
ENSMUSG00000016496.8 23.69362
ENSMUSG00000050335.18 23.52743
ENSMUSG00000005800.4 21.62630
ENSMUSG00000032035.17 23.24502
ENSMUSG00000034731.12 23.36313
ENSMUSG00000025701.13 23.29131
Columns are
logFC: log2 fold change of WT.C/WT.NC
AveExpr: Average expression across all samples, in log2 CPM
t: logFC divided by its standard error
P.Value: Raw p-value (based on t) from test that logFC differs from 0
adj.P.Val: Benjamini-Hochberg false discovery rate adjusted p-value
B: log-odds that gene is DE (arguably less useful than the other columns)
ENSMUSG00000030203.18 has higher expression at WT NC than at WT C (logFC is negative). ENSMUSG00000026193.16 has higher expression at WT C than at WT NC (logFC is positive).
9. Write top.table to a file, adding in cpms and annotation
top.table $ Gene <- rownames ( top.table )
top.table <- top.table [, c ( "Gene" , names ( top.table )[ 1 : 6 ])]
top.table <- data.frame ( top.table , anno [ match ( top.table $ Gene , anno $ Gene.stable.ID.version ),], logcpm [ match ( top.table $ Gene , rownames ( logcpm )),])
head ( top.table )
Gene logFC AveExpr t
ENSMUSG00000020608.8 ENSMUSG00000020608.8 -2.493130 7.869004 -44.14352
ENSMUSG00000052212.7 ENSMUSG00000052212.7 4.539354 6.223898 40.65736
ENSMUSG00000049103.15 ENSMUSG00000049103.15 2.152305 9.912143 38.76983
ENSMUSG00000030203.18 ENSMUSG00000030203.18 -4.128233 7.025932 -33.50481
ENSMUSG00000027508.16 ENSMUSG00000027508.16 -1.906648 8.143581 -32.87085
ENSMUSG00000021990.17 ENSMUSG00000021990.17 -2.686905 8.379626 -32.76572
P.Value adj.P.Val B Gene.stable.ID
ENSMUSG00000020608.8 8.218003e-19 9.460565e-15 33.38996 ENSMUSG00000020608
ENSMUSG00000052212.7 3.232959e-18 1.860891e-14 31.53894 ENSMUSG00000052212
ENSMUSG00000049103.15 7.127039e-18 2.734882e-14 31.31019 ENSMUSG00000049103
ENSMUSG00000030203.18 8.029402e-17 2.228834e-13 28.83527 ENSMUSG00000030203
ENSMUSG00000027508.16 1.101664e-16 2.228834e-13 28.58448 ENSMUSG00000027508
ENSMUSG00000021990.17 1.161658e-16 2.228834e-13 28.52970 ENSMUSG00000021990
Gene.stable.ID.version
ENSMUSG00000020608.8 ENSMUSG00000020608.8
ENSMUSG00000052212.7 ENSMUSG00000052212.7
ENSMUSG00000049103.15 ENSMUSG00000049103.15
ENSMUSG00000030203.18 ENSMUSG00000030203.18
ENSMUSG00000027508.16 ENSMUSG00000027508.16
ENSMUSG00000021990.17 ENSMUSG00000021990.17
Gene.description
ENSMUSG00000020608.8 structural maintenance of chromosomes 6 [Source:MGI Symbol;Acc:MGI:1914491]
ENSMUSG00000052212.7 CD177 antigen [Source:MGI Symbol;Acc:MGI:1916141]
ENSMUSG00000049103.15 chemokine (C-C motif) receptor 2 [Source:MGI Symbol;Acc:MGI:106185]
ENSMUSG00000030203.18 dual specificity phosphatase 16 [Source:MGI Symbol;Acc:MGI:1917936]
ENSMUSG00000027508.16 phosphoprotein associated with glycosphingolipid microdomains 1 [Source:MGI Symbol;Acc:MGI:2443160]
ENSMUSG00000021990.17 spermatogenesis associated 13 [Source:MGI Symbol;Acc:MGI:104838]
Chromosome.scaffold.name Gene.start..bp. Gene.end..bp.
ENSMUSG00000020608.8 12 11315887 11369786
ENSMUSG00000052212.7 7 24443408 24459736
ENSMUSG00000049103.15 9 123901987 123913594
ENSMUSG00000030203.18 6 134692431 134769588
ENSMUSG00000027508.16 3 9752539 9898739
ENSMUSG00000021990.17 14 60871450 61002005
Strand Gene.name Transcript.count Gene...GC.content
ENSMUSG00000020608.8 1 Smc6 12 38.40
ENSMUSG00000052212.7 -1 Cd177 2 52.26
ENSMUSG00000049103.15 1 Ccr2 4 38.86
ENSMUSG00000030203.18 -1 Dusp16 7 41.74
ENSMUSG00000027508.16 -1 Pag1 5 44.66
ENSMUSG00000021990.17 1 Spata13 9 47.38
Gene.type mouse_110_WT_C mouse_110_WT_NC
ENSMUSG00000020608.8 protein_coding 6.655047 9.080727
ENSMUSG00000052212.7 protein_coding 8.661587 4.190151
ENSMUSG00000049103.15 protein_coding 10.944175 8.855782
ENSMUSG00000030203.18 protein_coding 5.044291 9.007196
ENSMUSG00000027508.16 protein_coding 7.223967 9.055317
ENSMUSG00000021990.17 protein_coding 7.003544 9.576715
mouse_148_WT_C mouse_148_WT_NC mouse_158_WT_C
ENSMUSG00000020608.8 7.056520 9.421518 6.778389
ENSMUSG00000052212.7 8.393913 3.665950 8.148673
ENSMUSG00000049103.15 11.280438 8.991397 11.102168
ENSMUSG00000030203.18 5.222585 9.112049 5.494145
ENSMUSG00000027508.16 7.086953 9.147773 7.424180
ENSMUSG00000021990.17 7.366667 9.808340 7.054526
mouse_158_WT_NC mouse_183_KOMIR150_C
ENSMUSG00000020608.8 9.187451 6.825973
ENSMUSG00000052212.7 3.423665 8.766870
ENSMUSG00000049103.15 8.757934 11.080629
ENSMUSG00000030203.18 9.234820 5.261254
ENSMUSG00000027508.16 9.292609 7.234678
ENSMUSG00000021990.17 9.754609 7.461915
mouse_183_KOMIR150_NC mouse_198_KOMIR150_C
ENSMUSG00000020608.8 9.312343 6.526691
ENSMUSG00000052212.7 3.560299 8.678775
ENSMUSG00000049103.15 8.759736 10.746479
ENSMUSG00000030203.18 8.936869 4.824102
ENSMUSG00000027508.16 8.858728 7.071960
ENSMUSG00000021990.17 9.604918 6.575551
mouse_198_KOMIR150_NC mouse_206_KOMIR150_C
ENSMUSG00000020608.8 8.986655 6.418331
ENSMUSG00000052212.7 3.790099 8.766170
ENSMUSG00000049103.15 8.537930 10.803031
ENSMUSG00000030203.18 9.216715 5.249907
ENSMUSG00000027508.16 8.819017 6.948477
ENSMUSG00000021990.17 9.334734 6.592224
mouse_206_KOMIR150_NC mouse_2670_KOTet3_C
ENSMUSG00000020608.8 8.947641 6.549630
ENSMUSG00000052212.7 3.686874 7.836953
ENSMUSG00000049103.15 8.564049 11.467048
ENSMUSG00000030203.18 9.532892 4.957196
ENSMUSG00000027508.16 8.892049 7.741692
ENSMUSG00000021990.17 9.205464 7.794636
mouse_2670_KOTet3_NC mouse_7530_KOTet3_C
ENSMUSG00000020608.8 9.517943 6.405323
ENSMUSG00000052212.7 4.129462 8.247370
ENSMUSG00000049103.15 7.552329 11.195297
ENSMUSG00000030203.18 9.913045 4.054373
ENSMUSG00000027508.16 9.509528 7.436609
ENSMUSG00000021990.17 10.645589 7.335982
mouse_7530_KOTet3_NC mouse_7531_KOTet3_C mouse_7532_WT_NC
ENSMUSG00000020608.8 9.353148 6.264398 8.854935
ENSMUSG00000052212.7 3.325902 9.028515 4.568319
ENSMUSG00000049103.15 7.252444 11.333679 9.613225
ENSMUSG00000030203.18 9.488268 4.091681 9.038311
ENSMUSG00000027508.16 9.452999 7.341412 8.969680
ENSMUSG00000021990.17 10.470302 6.903384 9.537187
mouse_H510_WT_C mouse_H510_WT_NC mouse_H514_WT_C
ENSMUSG00000020608.8 6.426574 9.002760 6.483338
ENSMUSG00000052212.7 8.952344 4.619567 8.767123
ENSMUSG00000049103.15 11.439414 9.551585 11.222499
ENSMUSG00000030203.18 4.163585 9.045058 4.851630
ENSMUSG00000027508.16 6.820551 8.700724 7.172684
ENSMUSG00000021990.17 6.507225 9.468731 6.826945
mouse_H514_WT_NC
ENSMUSG00000020608.8 9.178533
ENSMUSG00000052212.7 4.369765
ENSMUSG00000049103.15 9.045490
ENSMUSG00000030203.18 9.204492
ENSMUSG00000027508.16 9.038024
ENSMUSG00000021990.17 9.607556
write.table ( top.table , file = "WT.C_v_WT.NC.txt" , row.names = F , sep = "\t" , quote = F )
Quiz 3
Submit Quiz
Linear models and contrasts
Let’s say we want to compare genotypes for cell type C. The only thing we have to change is the call to makeContrasts:
contr <- makeContrasts ( groupWT.C - groupKOMIR150.C , levels = colnames ( coef ( fit )))
tmp <- contrasts.fit ( fit , contr )
tmp <- eBayes ( tmp )
top.table <- topTable ( tmp , sort.by = "P" , n = Inf )
head ( top.table , 20 )
logFC AveExpr t P.Value adj.P.Val
ENSMUSG00000030703.9 -2.9863951 4.5693068 -14.467831 6.534002e-11 7.521943e-07
ENSMUSG00000044229.10 -3.2426537 6.8631393 -11.472401 2.286309e-09 1.315999e-05
ENSMUSG00000066687.6 -2.0775450 4.9576762 -9.073208 6.982185e-08 2.100463e-04
ENSMUSG00000030748.10 1.7283647 7.0828176 9.044739 7.298344e-08 2.100463e-04
ENSMUSG00000040152.9 -2.2243531 6.4731392 -8.656596 1.347746e-07 2.696580e-04
ENSMUSG00000032012.10 -5.2405848 5.0378142 -8.630481 1.405445e-07 2.696580e-04
ENSMUSG00000008348.10 -1.2046182 6.2811339 -8.003757 3.942229e-07 6.483277e-04
ENSMUSG00000067017.6 4.9613474 3.0375239 7.888379 4.792511e-07 6.896423e-04
ENSMUSG00000028028.12 0.8880151 7.2348693 7.592839 7.966473e-07 1.019000e-03
ENSMUSG00000020893.18 -1.2149550 7.5689129 -7.032931 2.153875e-06 2.479541e-03
ENSMUSG00000055435.7 -1.3731238 5.0008350 -6.774942 3.455008e-06 3.489714e-03
ENSMUSG00000028037.14 5.6346078 2.2895098 6.747116 3.637645e-06 3.489714e-03
ENSMUSG00000039146.6 7.4559054 0.1545606 6.623162 4.581752e-06 4.057318e-03
ENSMUSG00000030365.12 0.9842650 6.6047572 6.531959 5.436848e-06 4.470643e-03
ENSMUSG00000024772.10 -1.2946239 6.3599701 -6.492778 5.853621e-06 4.492459e-03
ENSMUSG00000028619.16 3.2022937 4.6322127 6.318097 8.157201e-06 5.869106e-03
ENSMUSG00000051495.9 -0.8566744 7.1729417 -6.033609 1.412842e-05 9.277204e-03
ENSMUSG00000042105.19 -0.6969525 7.4718295 -6.020099 1.450570e-05 9.277204e-03
ENSMUSG00000096768.9 -1.9760465 3.4604559 -5.970071 1.599618e-05 9.692000e-03
ENSMUSG00000055994.16 -1.2354899 5.8697259 -5.801980 2.227347e-05 1.282061e-02
B
ENSMUSG00000030703.9 14.826414
ENSMUSG00000044229.10 11.820827
ENSMUSG00000066687.6 8.379807
ENSMUSG00000030748.10 8.437268
ENSMUSG00000040152.9 7.687868
ENSMUSG00000032012.10 6.893839
ENSMUSG00000008348.10 6.686509
ENSMUSG00000067017.6 4.785950
ENSMUSG00000028028.12 5.893227
ENSMUSG00000020893.18 4.821952
ENSMUSG00000055435.7 4.615692
ENSMUSG00000028037.14 3.081116
ENSMUSG00000039146.6 1.011161
ENSMUSG00000030365.12 4.115225
ENSMUSG00000024772.10 3.972582
ENSMUSG00000028619.16 3.414552
ENSMUSG00000051495.9 2.957872
ENSMUSG00000042105.19 2.892158
ENSMUSG00000096768.9 3.203111
ENSMUSG00000055994.16 2.722106
length ( which ( top.table $ adj.P.Val < 0.05 )) # number of DE genes
[1] 42
top.table $ Gene <- rownames ( top.table )
top.table <- top.table [, c ( "Gene" , names ( top.table )[ 1 : 6 ])]
top.table <- data.frame ( top.table , anno [ match ( top.table $ Gene , anno $ Gene.stable.ID ),], logcpm [ match ( top.table $ Gene , rownames ( logcpm )),])
write.table ( top.table , file = "WT.C_v_KOMIR150.C.txt" , row.names = F , sep = "\t" , quote = F )
What if we refit our model as a two-factor model (rather than using the group variable)?
Create new model matrix:
genotype <- factor ( metadata $ genotype , levels = c ( "WT" , "KOMIR150" , "KOTet3" ))
cell_type <- factor ( metadata $ cell_type , levels = c ( "C" , "NC" ))
mouse <- factor ( metadata $ mouse , levels = c ( "110" , "148" , "158" , "183" , "198" , "206" , "2670" , "7530" , "7531" , "7532" , "H510" , "H514" ))
mm <- model.matrix ( ~ genotype * cell_type + mouse )
We are specifying that model includes effects for genotype, cell type, and the genotype-cell type interaction (which allows the differences between genotypes to differ across cell types).
[1] "(Intercept)" "genotypeKOMIR150"
[3] "genotypeKOTet3" "cell_typeNC"
[5] "mouse148" "mouse158"
[7] "mouse183" "mouse198"
[9] "mouse206" "mouse2670"
[11] "mouse7530" "mouse7531"
[13] "mouse7532" "mouseH510"
[15] "mouseH514" "genotypeKOMIR150:cell_typeNC"
[17] "genotypeKOTet3:cell_typeNC"
y <- voom ( d , mm , plot = F )
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
(Intercept) genotypeKOMIR150 genotypeKOTet3 cell_typeNC
ENSMUSG00000033845.14 4.704938 0.06789836 0.25871696 -0.19703026
ENSMUSG00000025903.15 5.396681 -0.41639687 0.01784334 -0.23999526
ENSMUSG00000033813.16 5.810657 0.10048044 -0.14459322 0.01776791
ENSMUSG00000033793.13 5.423001 -0.19233822 -0.13912628 -0.27305317
ENSMUSG00000090031.4 1.916860 0.38856501 1.57665255 0.21964670
ENSMUSG00000025907.15 6.485529 -0.10233668 -0.01887111 -0.27068938
mouse148 mouse158 mouse183 mouse198 mouse206
ENSMUSG00000033845.14 0.23436789 0.15808834 -0.34352972 -0.06398921 NA
ENSMUSG00000025903.15 -0.07626244 -0.06283904 0.37805043 0.34135424 NA
ENSMUSG00000033813.16 0.04411038 0.03083226 -0.22263564 -0.01365372 NA
ENSMUSG00000033793.13 -0.20016385 -0.25080455 -0.27484845 0.07620846 NA
ENSMUSG00000090031.4 -0.12083090 0.10917459 -0.35385622 0.15261515 NA
ENSMUSG00000025907.15 -0.15305947 -0.06970361 -0.06134122 0.16667360 NA
mouse2670 mouse7530 mouse7531 mouse7532
ENSMUSG00000033845.14 -0.06090536 -0.005868771 NA 0.13536933
ENSMUSG00000025903.15 0.03692425 -0.148032773 NA 0.17950152
ENSMUSG00000033813.16 0.16989159 0.194964781 NA 0.05877819
ENSMUSG00000033793.13 0.21176027 0.474793360 NA -0.32354845
ENSMUSG00000090031.4 -1.10525514 -0.205389075 NA 1.89443112
ENSMUSG00000025907.15 -0.05262854 -0.116519792 NA 0.10447457
mouseH510 mouseH514 genotypeKOMIR150:cell_typeNC
ENSMUSG00000033845.14 0.06729753 0.1296202 0.39554887
ENSMUSG00000025903.15 0.11575108 0.1254478 0.29033994
ENSMUSG00000033813.16 0.03878651 -0.0376184 0.05439329
ENSMUSG00000033793.13 -0.09193819 -0.1845264 0.11197163
ENSMUSG00000090031.4 1.24527471 1.4453435 -0.05948241
ENSMUSG00000025907.15 -0.16556570 -0.2535768 0.08507706
genotypeKOTet3:cell_typeNC
ENSMUSG00000033845.14 -0.1567903
ENSMUSG00000025903.15 0.1313766
ENSMUSG00000033813.16 0.1749214
ENSMUSG00000033793.13 -0.2360156
ENSMUSG00000090031.4 0.1428805
ENSMUSG00000025907.15 0.3550733
[1] "(Intercept)" "genotypeKOMIR150"
[3] "genotypeKOTet3" "cell_typeNC"
[5] "mouse148" "mouse158"
[7] "mouse183" "mouse198"
[9] "mouse206" "mouse2670"
[11] "mouse7530" "mouse7531"
[13] "mouse7532" "mouseH510"
[15] "mouseH514" "genotypeKOMIR150:cell_typeNC"
[17] "genotypeKOTet3:cell_typeNC"
The coefficient genotypeKOMIR150 represents the difference in mean expression between KOMIR150 and the reference genotype (WT), for cell type C (the reference level for cell type)
The coefficient cell_typeNC represents the difference in mean expression between cell type NC and cell type C, for genotype WT
The coefficient genotypeKOMIR150:cell_typeNC is the difference between cell types NC and C of the differences between genotypes KOMIR150 and WT (the interaction effect).
Let’s estimate the difference between genotypes WT and KOMIR150 in cell type C.
tmp <- contrasts.fit ( fit , coef = 2 ) # Directly test second coefficient
tmp <- eBayes ( tmp )
top.table <- topTable ( tmp , sort.by = "P" , n = Inf )
head ( top.table , 20 )
logFC AveExpr t P.Value adj.P.Val
ENSMUSG00000030703.9 2.9863951 4.5693068 14.467831 6.534002e-11 7.521943e-07
ENSMUSG00000044229.10 3.2426537 6.8631393 11.472401 2.286309e-09 1.315999e-05
ENSMUSG00000066687.6 2.0775450 4.9576762 9.073208 6.982185e-08 2.100463e-04
ENSMUSG00000030748.10 -1.7283647 7.0828176 -9.044739 7.298344e-08 2.100463e-04
ENSMUSG00000040152.9 2.2243531 6.4731392 8.656596 1.347746e-07 2.696580e-04
ENSMUSG00000032012.10 5.2405848 5.0378142 8.630481 1.405445e-07 2.696580e-04
ENSMUSG00000008348.10 1.2046182 6.2811339 8.003757 3.942229e-07 6.483277e-04
ENSMUSG00000067017.6 -4.9613474 3.0375239 -7.888379 4.792511e-07 6.896423e-04
ENSMUSG00000028028.12 -0.8880151 7.2348693 -7.592839 7.966473e-07 1.019000e-03
ENSMUSG00000020893.18 1.2149550 7.5689129 7.032931 2.153875e-06 2.479541e-03
ENSMUSG00000055435.7 1.3731238 5.0008350 6.774942 3.455008e-06 3.489714e-03
ENSMUSG00000028037.14 -5.6346078 2.2895098 -6.747116 3.637645e-06 3.489714e-03
ENSMUSG00000039146.6 -7.4559054 0.1545606 -6.623162 4.581752e-06 4.057318e-03
ENSMUSG00000030365.12 -0.9842650 6.6047572 -6.531959 5.436848e-06 4.470643e-03
ENSMUSG00000024772.10 1.2946239 6.3599701 6.492778 5.853621e-06 4.492459e-03
ENSMUSG00000028619.16 -3.2022937 4.6322127 -6.318097 8.157201e-06 5.869106e-03
ENSMUSG00000051495.9 0.8566744 7.1729417 6.033609 1.412842e-05 9.277204e-03
ENSMUSG00000042105.19 0.6969525 7.4718295 6.020099 1.450570e-05 9.277204e-03
ENSMUSG00000096768.9 1.9760465 3.4604559 5.970071 1.599618e-05 9.692000e-03
ENSMUSG00000055994.16 1.2354899 5.8697259 5.801980 2.227347e-05 1.282061e-02
B
ENSMUSG00000030703.9 14.826414
ENSMUSG00000044229.10 11.820827
ENSMUSG00000066687.6 8.379807
ENSMUSG00000030748.10 8.437268
ENSMUSG00000040152.9 7.687868
ENSMUSG00000032012.10 6.893839
ENSMUSG00000008348.10 6.686509
ENSMUSG00000067017.6 4.785950
ENSMUSG00000028028.12 5.893227
ENSMUSG00000020893.18 4.821952
ENSMUSG00000055435.7 4.615692
ENSMUSG00000028037.14 3.081116
ENSMUSG00000039146.6 1.011161
ENSMUSG00000030365.12 4.115225
ENSMUSG00000024772.10 3.972582
ENSMUSG00000028619.16 3.414552
ENSMUSG00000051495.9 2.957872
ENSMUSG00000042105.19 2.892158
ENSMUSG00000096768.9 3.203111
ENSMUSG00000055994.16 2.722106
length ( which ( top.table $ adj.P.Val < 0.05 )) # number of DE genes
[1] 42
We get the same results as with the model where each coefficient corresponded to a group mean. In essence, these are the same model, so use whichever is most convenient for what you are estimating.
The interaction effects genotypeKOMIR150:cell_typeNC are easier to estimate and test in this setup.
(Intercept) genotypeKOMIR150 genotypeKOTet3 cell_typeNC
ENSMUSG00000033845.14 4.704938 0.06789836 0.25871696 -0.19703026
ENSMUSG00000025903.15 5.396681 -0.41639687 0.01784334 -0.23999526
ENSMUSG00000033813.16 5.810657 0.10048044 -0.14459322 0.01776791
ENSMUSG00000033793.13 5.423001 -0.19233822 -0.13912628 -0.27305317
ENSMUSG00000090031.4 1.916860 0.38856501 1.57665255 0.21964670
ENSMUSG00000025907.15 6.485529 -0.10233668 -0.01887111 -0.27068938
mouse148 mouse158 mouse183 mouse198 mouse206
ENSMUSG00000033845.14 0.23436789 0.15808834 -0.34352972 -0.06398921 NA
ENSMUSG00000025903.15 -0.07626244 -0.06283904 0.37805043 0.34135424 NA
ENSMUSG00000033813.16 0.04411038 0.03083226 -0.22263564 -0.01365372 NA
ENSMUSG00000033793.13 -0.20016385 -0.25080455 -0.27484845 0.07620846 NA
ENSMUSG00000090031.4 -0.12083090 0.10917459 -0.35385622 0.15261515 NA
ENSMUSG00000025907.15 -0.15305947 -0.06970361 -0.06134122 0.16667360 NA
mouse2670 mouse7530 mouse7531 mouse7532
ENSMUSG00000033845.14 -0.06090536 -0.005868771 NA 0.13536933
ENSMUSG00000025903.15 0.03692425 -0.148032773 NA 0.17950152
ENSMUSG00000033813.16 0.16989159 0.194964781 NA 0.05877819
ENSMUSG00000033793.13 0.21176027 0.474793360 NA -0.32354845
ENSMUSG00000090031.4 -1.10525514 -0.205389075 NA 1.89443112
ENSMUSG00000025907.15 -0.05262854 -0.116519792 NA 0.10447457
mouseH510 mouseH514 genotypeKOMIR150:cell_typeNC
ENSMUSG00000033845.14 0.06729753 0.1296202 0.39554887
ENSMUSG00000025903.15 0.11575108 0.1254478 0.29033994
ENSMUSG00000033813.16 0.03878651 -0.0376184 0.05439329
ENSMUSG00000033793.13 -0.09193819 -0.1845264 0.11197163
ENSMUSG00000090031.4 1.24527471 1.4453435 -0.05948241
ENSMUSG00000025907.15 -0.16556570 -0.2535768 0.08507706
genotypeKOTet3:cell_typeNC
ENSMUSG00000033845.14 -0.1567903
ENSMUSG00000025903.15 0.1313766
ENSMUSG00000033813.16 0.1749214
ENSMUSG00000033793.13 -0.2360156
ENSMUSG00000090031.4 0.1428805
ENSMUSG00000025907.15 0.3550733
[1] "(Intercept)" "genotypeKOMIR150"
[3] "genotypeKOTet3" "cell_typeNC"
[5] "mouse148" "mouse158"
[7] "mouse183" "mouse198"
[9] "mouse206" "mouse2670"
[11] "mouse7530" "mouse7531"
[13] "mouse7532" "mouseH510"
[15] "mouseH514" "genotypeKOMIR150:cell_typeNC"
[17] "genotypeKOTet3:cell_typeNC"
tmp <- contrasts.fit ( fit , coef = 16 ) # Test genotypeKOMIR150:cell_typeNC
tmp <- eBayes ( tmp )
top.table <- topTable ( tmp , sort.by = "P" , n = Inf )
head ( top.table , 20 )
logFC AveExpr t P.Value adj.P.Val
ENSMUSG00000030748.10 0.7301436 7.0828176 4.682442 0.0002206452 0.8038914
ENSMUSG00000076609.3 -4.5277268 3.5005625 -4.633852 0.0002444803 0.8038914
ENSMUSG00000033004.17 -0.3755811 8.8053852 -4.467756 0.0003476870 0.8038914
ENSMUSG00000029004.16 -0.3293392 8.5041398 -4.347231 0.0004495260 0.8038914
ENSMUSG00000015501.11 -0.8445027 5.5229673 -4.252777 0.0005501603 0.8038914
ENSMUSG00000054387.14 -0.3401317 7.9800385 -4.067489 0.0008189156 0.8038914
ENSMUSG00000030724.8 -2.8783133 1.0281699 -4.053839 0.0008433224 0.8038914
ENSMUSG00000026357.4 0.9387766 4.4219437 4.029620 0.0008884491 0.8038914
ENSMUSG00000049313.9 0.3199510 9.8053597 4.013301 0.0009202219 0.8038914
ENSMUSG00000004110.18 -3.5089377 0.6816706 -3.989155 0.0009693475 0.8038914
ENSMUSG00000037020.17 -0.9416391 4.0168441 -3.901340 0.0011713639 0.8038914
ENSMUSG00000029647.16 -0.3376717 7.4963076 -3.893756 0.0011906855 0.8038914
ENSMUSG00000004952.14 -0.4311087 7.8232334 -3.884801 0.0012139099 0.8038914
ENSMUSG00000110218.2 -1.8769072 2.5684107 -3.883693 0.0012168142 0.8038914
ENSMUSG00000024772.10 -0.6738778 6.3599701 -3.819290 0.0013982485 0.8038914
ENSMUSG00000043091.10 1.0636471 4.2514740 3.815865 0.0014086228 0.8038914
ENSMUSG00000021810.4 -0.6836902 5.1701974 -3.778127 0.0015281931 0.8038914
ENSMUSG00000005533.11 -0.8653772 5.6333329 -3.766463 0.0015671706 0.8038914
ENSMUSG00000037857.17 -0.3596708 7.5475602 -3.701972 0.0018013514 0.8038914
ENSMUSG00000020644.10 0.6915393 6.7904695 3.673955 0.0019137072 0.8038914
B
ENSMUSG00000030748.10 0.5197268
ENSMUSG00000076609.3 -1.3871691
ENSMUSG00000033004.17 0.3610022
ENSMUSG00000029004.16 0.1268441
ENSMUSG00000015501.11 -0.4011410
ENSMUSG00000054387.14 -0.4135199
ENSMUSG00000030724.8 -3.1346037
ENSMUSG00000026357.4 -1.2149007
ENSMUSG00000049313.9 -0.5719958
ENSMUSG00000004110.18 -3.4420133
ENSMUSG00000037020.17 -1.7102740
ENSMUSG00000029647.16 -0.7457326
ENSMUSG00000004952.14 -0.7643231
ENSMUSG00000110218.2 -2.8032590
ENSMUSG00000024772.10 -0.9043908
ENSMUSG00000043091.10 -1.7232597
ENSMUSG00000021810.4 -1.2639070
ENSMUSG00000005533.11 -1.0968028
ENSMUSG00000037857.17 -1.1164292
ENSMUSG00000020644.10 -1.1723433
length ( which ( top.table $ adj.P.Val < 0.05 ))
[1] 0
The log fold change here is the difference between genotypes KOMIR150 and WT in the log fold changes between cell types NC and C.
A gene for which this interaction effect is significant is one for which the effect of cell type differs between genotypes, and for which the effect of genotypes differs between cell types.
More complicated models
Specifying a different model is simply a matter of changing the calls to model.matrix (and possibly to contrasts.fit).
What if we want to adjust for a continuous variable like some health score?
(We are making this data up here, but it would typically be a variable in your metadata.)
# Generate example health data
set.seed ( 99 )
HScore <- rnorm ( n = 22 , mean = 7.5 , sd = 1 )
HScore
[1] 7.713963 7.979658 7.587829 7.943859 7.137162 7.622674 6.636155 7.989624
[9] 7.135883 6.205758 6.754231 8.421550 8.250054 4.991446 4.459066 7.500266
[17] 7.105981 5.754972 7.998631 7.770954 8.598922 8.252513
Model adjusting for HScore score:
mm <- model.matrix ( ~ 0 + group + mouse + HScore )
y <- voom ( d , mm , plot = F )
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
contr <- makeContrasts ( groupKOMIR150.NC - groupWT.NC ,
levels = colnames ( coef ( fit )))
tmp <- contrasts.fit ( fit , contr )
tmp <- eBayes ( tmp )
top.table <- topTable ( tmp , sort.by = "P" , n = Inf )
head ( top.table , 20 )
logFC AveExpr t P.Value adj.P.Val
ENSMUSG00000044229.10 3.1944863 6.863139 21.591142 1.272070e-13 1.464406e-09
ENSMUSG00000030703.9 3.3086381 4.569307 14.439855 7.488554e-11 3.372909e-07
ENSMUSG00000032012.10 5.4910665 5.037814 14.291312 8.789720e-11 3.372909e-07
ENSMUSG00000040152.9 3.0228530 6.473139 9.960733 1.970367e-08 5.670717e-05
ENSMUSG00000008348.10 1.3156962 6.281134 9.591148 3.386858e-08 7.797903e-05
ENSMUSG00000121395.1 5.2544557 1.615833 8.794012 1.147633e-07 1.892895e-04
ENSMUSG00000028619.16 -2.9500126 4.632213 -8.693252 1.346154e-07 1.892895e-04
ENSMUSG00000028173.11 -1.8207756 6.704770 -8.665635 1.406630e-07 1.892895e-04
ENSMUSG00000070372.12 0.9143234 7.442347 8.613590 1.528462e-07 1.892895e-04
ENSMUSG00000100801.2 -2.5665119 5.616718 -8.567996 1.644280e-07 1.892895e-04
ENSMUSG00000020893.18 1.0984785 7.568913 8.450798 1.986196e-07 2.078645e-04
ENSMUSG00000042396.11 -1.0114196 6.566913 -8.195440 3.015455e-07 2.892826e-04
ENSMUSG00000030365.12 -1.0442557 6.604757 -8.122206 3.404193e-07 3.014544e-04
ENSMUSG00000030748.10 -0.9903796 7.082818 -7.860214 5.282551e-07 4.343767e-04
ENSMUSG00000035212.15 0.8124150 7.148243 7.538768 9.167908e-07 6.832996e-04
ENSMUSG00000066687.6 1.8477997 4.957676 7.518480 9.496867e-07 6.832996e-04
ENSMUSG00000028028.12 -0.8437642 7.234869 -7.354995 1.264206e-06 8.560904e-04
ENSMUSG00000067017.6 -3.9210527 3.037524 -7.246079 1.532670e-06 9.802273e-04
ENSMUSG00000042105.19 0.6811150 7.471830 6.764093 3.663597e-06 2.166408e-03
ENSMUSG00000063065.14 -0.6317182 7.955539 -6.749452 3.763738e-06 2.166408e-03
B
ENSMUSG00000044229.10 21.211756
ENSMUSG00000030703.9 14.378799
ENSMUSG00000032012.10 13.827619
ENSMUSG00000040152.9 9.719245
ENSMUSG00000008348.10 9.140963
ENSMUSG00000121395.1 4.780628
ENSMUSG00000028619.16 7.366601
ENSMUSG00000028173.11 7.742650
ENSMUSG00000070372.12 7.507809
ENSMUSG00000100801.2 7.631232
ENSMUSG00000020893.18 7.243964
ENSMUSG00000042396.11 6.952179
ENSMUSG00000030365.12 6.887191
ENSMUSG00000030748.10 6.334850
ENSMUSG00000035212.15 5.753762
ENSMUSG00000066687.6 5.901683
ENSMUSG00000028028.12 5.445645
ENSMUSG00000067017.6 3.922454
ENSMUSG00000042105.19 4.314574
ENSMUSG00000063065.14 4.209432
length ( which ( top.table $ adj.P.Val < 0.05 ))
[1] 99
What if we want to look at the correlation of gene expression with a continuous variable like pH?
# Generate example pH data
set.seed ( 99 )
pH <- rnorm ( n = 22 , mean = 8 , sd = 1.5 )
pH
[1] 8.320944 8.719487 8.131743 8.665788 7.455743 8.184011 6.704232 8.734436
[9] 7.453825 6.058637 6.881346 9.382326 9.125082 4.237169 3.438599 8.000399
[17] 7.408972 5.382459 8.747947 8.406431 9.648382 9.128770
Specify model matrix:
mm <- model.matrix ( ~ pH )
head ( mm )
(Intercept) pH
1 1 8.320944
2 1 8.719487
3 1 8.131743
4 1 8.665788
5 1 7.455743
6 1 8.184011
y <- voom ( d , mm , plot = F )
fit <- lmFit ( y , mm )
tmp <- contrasts.fit ( fit , coef = 2 ) # test "pH" coefficient
tmp <- eBayes ( tmp )
top.table <- topTable ( tmp , sort.by = "P" , n = Inf )
head ( top.table , 20 )
logFC AveExpr t P.Value adj.P.Val
ENSMUSG00000056054.10 -1.18673002 1.0853625 -5.144010 3.304043e-05 0.3803614
ENSMUSG00000094497.2 -0.96027864 -0.5959555 -4.732841 9.146270e-05 0.4005065
ENSMUSG00000026822.15 -1.15511915 1.2851017 -4.679731 1.043711e-04 0.4005065
ENSMUSG00000027111.17 -0.51302121 2.0111279 -4.275558 2.854228e-04 0.8214467
ENSMUSG00000069049.12 -1.17303192 1.5672305 -4.103353 4.379811e-04 0.9998139
ENSMUSG00000056071.13 -1.00327715 0.9312647 -3.850138 8.201811e-04 0.9998139
ENSMUSG00000069045.12 -1.21938666 2.1004598 -3.798915 9.306922e-04 0.9998139
ENSMUSG00000016356.19 0.26508860 1.7245190 3.595488 1.533942e-03 0.9998139
ENSMUSG00000056673.15 -1.09930435 1.1039847 -3.565025 1.652504e-03 0.9998139
ENSMUSG00000031843.3 -0.17486398 3.6322229 -3.517683 1.854783e-03 0.9998139
ENSMUSG00000046032.17 -0.07738062 5.1955088 -3.503447 1.920216e-03 0.9998139
ENSMUSG00000040521.12 -0.17299122 2.8932663 -3.501371 1.929944e-03 0.9998139
ENSMUSG00000036764.13 -0.34856828 0.1763688 -3.501140 1.931032e-03 0.9998139
ENSMUSG00000091537.3 -0.09077905 5.4715241 -3.463409 2.116577e-03 0.9998139
ENSMUSG00000035877.18 -0.16450928 2.7738286 -3.460712 2.130491e-03 0.9998139
ENSMUSG00000030835.7 -0.07749780 5.7012899 -3.432541 2.281232e-03 0.9998139
ENSMUSG00000090946.4 -0.10021289 5.8392972 -3.401863 2.457223e-03 0.9998139
ENSMUSG00000041747.4 -0.10886439 4.4939952 -3.361340 2.710093e-03 0.9998139
ENSMUSG00000068457.15 -0.86660700 0.1173072 -3.335085 2.887262e-03 0.9998139
ENSMUSG00000023110.13 -0.11877059 4.2915718 -3.295808 3.173503e-03 0.9998139
B
ENSMUSG00000056054.10 0.1866221
ENSMUSG00000094497.2 -1.8289642
ENSMUSG00000026822.15 -0.3253501
ENSMUSG00000027111.17 -0.5787521
ENSMUSG00000069049.12 -0.7728835
ENSMUSG00000056071.13 -1.7392699
ENSMUSG00000069045.12 -1.0750943
ENSMUSG00000016356.19 -2.6631566
ENSMUSG00000056673.15 -1.9083213
ENSMUSG00000031843.3 -1.3555949
ENSMUSG00000046032.17 -1.2352969
ENSMUSG00000040521.12 -1.6064368
ENSMUSG00000036764.13 -2.9643896
ENSMUSG00000091537.3 -1.3144829
ENSMUSG00000035877.18 -1.7109789
ENSMUSG00000030835.7 -1.3791489
ENSMUSG00000090946.4 -1.4444446
ENSMUSG00000041747.4 -1.5478931
ENSMUSG00000068457.15 -2.7617617
ENSMUSG00000023110.13 -1.6843304
length ( which ( top.table $ adj.P.Val < 0.05 ))
[1] 0
In this case, limma is fitting a linear regression model, which here is a straight line fit, with the slope and intercept defined by the model coefficients:
ENSMUSG00000056054 <- y $ E [ "ENSMUSG00000056054.10" ,]
plot ( ENSMUSG00000056054 ~ pH , ylim = c ( 0 , 3.5 ))
intercept <- coef ( fit )[ "ENSMUSG00000056054.10" , "(Intercept)" ]
slope <- coef ( fit )[ "ENSMUSG00000056054.10" , "pH" ]
abline ( a = intercept , b = slope )
[1] -1.18673
In this example, the log fold change logFC is the slope of the line, or the change in gene expression (on the log2 CPM scale) for each unit increase in pH.
Here, a logFC of 0.20 means a 0.20 log2 CPM increase in gene expression for each unit increase in pH, or a 15% increase on the CPM scale (2^0.20 = 1.15).
A bit more on linear models
Limma fits a linear model to each gene.
Linear models include analysis of variance (ANOVA) models, linear regression, and any model of the form
Y = β0 + β1 X1 + β2 X2 + … + βp Xp + ε
The covariates X can be:
a continuous variable (pH, HScore score, age, weight, temperature, etc.)
Dummy variables coding a categorical covariate (like cell type, genotype, and group)
The β’s are unknown parameters to be estimated.
In limma, the β’s are the log fold changes.
The error (residual) term ε is assumed to be normally distributed with a variance that is constant across the range of the data.
Normally distributed means the residuals come from a distribution that looks like this:
The log2 transformation that voom applies to the counts makes the data “normal enough”, but doesn’t completely stabilize the variance:
mm <- model.matrix ( ~ 0 + group + mouse )
tmp <- voom ( d , mm , plot = T )
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
The log2 counts per million are more variable at lower expression levels. The variance weights calculated by voom address this situation.
Both edgeR and limma have VERY comprehensive user manuals
The limma users’ guide has great details on model specification.
Simple plotting
mm <- model.matrix ( ~ genotype * cell_type + mouse )
colnames ( mm ) <- make.names ( colnames ( mm ))
y <- voom ( d , mm , plot = F )
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
contrast.matrix <- makeContrasts ( genotypeKOMIR150 , levels = colnames ( coef ( fit )))
fit2 <- contrasts.fit ( fit , contrast.matrix )
fit2 <- eBayes ( fit2 )
top.table <- topTable ( fit2 , coef = 1 , sort.by = "P" , n = 40 )
Volcano plot
volcanoplot ( fit2 , coef = 1 , highlight = 8 , names = rownames ( fit2 ), main = "Genotype KOMIR150 vs. WT for cell type C" , cex.main = 0.8 )
head ( anno [ match ( rownames ( fit2 ), anno $ Gene.stable.ID.version ),
c ( "Gene.stable.ID.version" , "Gene.name" ) ])
Gene.stable.ID.version Gene.name
45894 ENSMUSG00000033845.14 Mrpl15
46299 ENSMUSG00000025903.15 Lypla1
46443 ENSMUSG00000033813.16 Tcea1
47013 ENSMUSG00000033793.13 Atp6v1h
51402 ENSMUSG00000090031.4 4732440D04Rik
47337 ENSMUSG00000025907.15 Rb1cc1
identical ( anno [ match ( rownames ( fit2 ), anno $ Gene.stable.ID.version ),
c ( "Gene.stable.ID.version" )], rownames ( fit2 ))
[1] TRUE
volcanoplot ( fit2 , coef = 1 , highlight = 8 , names = anno [ match ( rownames ( fit2 ), anno $ Gene.stable.ID.version ), "Gene.name" ], main = "Genotype KOMIR150 vs. WT for cell type C" , cex.main = 0.8 )
Heatmap
#using a red and blue color scheme without traces and scaling each row
heatmap.2 ( logcpm [ rownames ( top.table ),], col = brewer.pal ( 11 , "RdBu" ), scale = "row" , trace = "none" )
anno [ match ( rownames ( top.table ), anno $ Gene.stable.ID.version ),
c ( "Gene.stable.ID.version" , "Gene.name" )]
Gene.stable.ID.version Gene.name
12278 ENSMUSG00000030703.9 Gdpd3
38040 ENSMUSG00000044229.10 Nxpe4
3257 ENSMUSG00000066687.6 Zbtb16
52251 ENSMUSG00000030748.10 Il4ra
55471 ENSMUSG00000040152.9 Thbs1
21185 ENSMUSG00000032012.10 Nectin1
34718 ENSMUSG00000008348.10 Ubc
45375 ENSMUSG00000067017.6 Capza1-ps1
18142 ENSMUSG00000028028.12 Alpk1
38350 ENSMUSG00000020893.18 Per1
17138 ENSMUSG00000055435.7 Maf
2685 ENSMUSG00000028037.14 Ifi44
2699 ENSMUSG00000039146.6 Ifi44l
47426 ENSMUSG00000030365.12 Clec2i
10390 ENSMUSG00000024772.10 Ehd1
6760 ENSMUSG00000028619.16 Tceanc2
29669 ENSMUSG00000051495.9 Irf2bp2
36873 ENSMUSG00000042105.19 Inpp5f
721 ENSMUSG00000096768.9 Gm47283
20958 ENSMUSG00000055994.16 Nod2
1919 ENSMUSG00000054008.10 Ndst1
1849 ENSMUSG00000033863.3 Klf9
34325 ENSMUSG00000070372.12 Capza1
15250 ENSMUSG00000076937.4 Iglc2
19991 ENSMUSG00000031431.14 Tsc22d3
16917 ENSMUSG00000028173.11 Wls
9365 ENSMUSG00000100801.2 Gm15459
38389 ENSMUSG00000035212.15 Leprot
43138 ENSMUSG00000121395.1
55825 ENSMUSG00000035385.6 Ccl2
7393 ENSMUSG00000051439.8 Cd14
48302 ENSMUSG00000020108.5 Ddit4
23582 ENSMUSG00000034342.10 Cbl
31502 ENSMUSG00000015501.11 Hivep2
50030 ENSMUSG00000040139.15 9430038I01Rik
24482 ENSMUSG00000045382.7 Cxcr4
31507 ENSMUSG00000048534.8 Jaml
48290 ENSMUSG00000030577.15 Cd22
24531 ENSMUSG00000003545.4 Fosb
6058 ENSMUSG00000076609.3 Igkc
identical ( anno [ match ( rownames ( top.table ), anno $ Gene.stable.ID.version ), "Gene.stable.ID.version" ], rownames ( top.table ))
[1] TRUE
heatmap.2 ( logcpm [ rownames ( top.table ),], col = brewer.pal ( 11 , "RdBu" ), scale = "row" , trace = "none" , labRow = anno [ match ( rownames ( top.table ), anno $ Gene.stable.ID.version ), "Gene.name" ])
2 factor venn diagram
mm <- model.matrix ( ~ genotype * cell_type + mouse )
colnames ( mm ) <- make.names ( colnames ( mm ))
y <- voom ( d , mm , plot = F )
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
Coefficients not estimable: mouse206 mouse7531
Warning: Partial NA coefficients for 11512 probe(s)
contrast.matrix <- makeContrasts ( genotypeKOMIR150 , genotypeKOMIR150 + genotypeKOMIR150.cell_typeNC , levels = colnames ( coef ( fit )))
fit2 <- contrasts.fit ( fit , contrast.matrix )
fit2 <- eBayes ( fit2 )
top.table <- topTable ( fit2 , coef = 1 , sort.by = "P" , n = 40 )
results <- decideTests ( fit2 )
vennDiagram ( results , names = c ( "C" , "NC" ), main = "DE Genes Between KOMIR150 and WT by Cell Type" , cex.main = 0.8 )
Download the Enrichment Analysis R Markdown document
download.file ( "https://raw.githubusercontent.com/ucdavis-bioinformatics-training/2023-June-RNA-Seq-Analysis/master/data_analysis/enrichment_mm.Rmd" , "enrichment_mm.Rmd" )
R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
time zone: America/Los_Angeles
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gplots_3.1.3 RColorBrewer_1.1-3 edgeR_3.42.4 limma_3.56.2
loaded via a namespace (and not attached):
[1] cli_3.6.1 knitr_1.43 rlang_1.1.1 xfun_0.39
[5] highr_0.10 KernSmooth_2.23-21 jsonlite_1.8.5 gtools_3.9.4
[9] htmltools_0.5.5 sass_0.4.6 locfit_1.5-9.8 rmarkdown_2.22
[13] grid_4.3.1 evaluate_0.21 jquerylib_0.1.4 caTools_1.18.2
[17] bitops_1.0-7 fastmap_1.1.1 yaml_2.3.7 compiler_4.3.1
[21] Rcpp_1.0.10 rstudioapi_0.14 lattice_0.21-8 digest_0.6.31
[25] R6_2.5.1 bslib_0.5.0 tools_4.3.1 cachem_1.0.8